Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293329

RESUMO

Diffuse intrinsic pontine gliomas (DIPG), the first cause of cerebral pediatric cancer death, will greatly benefit from specific and non-invasive biomarkers for patient follow-up and monitoring of drug efficacy. Since biopsies are challenging for brain tumors, molecular imaging may be a technique of choice to target and follow tumor evolution. So far, MR remains the imaging technique of reference for DIPG, although it often fails to define the extent of tumors, an essential parameter for therapeutic efficacy assessment. Thanks to its high sensitivity, positron emission tomography (PET) offers a unique way to target specific biomarkers in vivo. We demonstrated in a patient-derived orthotopic xenograft (PDOX) model in the rat that the translocator protein of 18 kDa (TSPO) may be a promising biomarker for monitoring DIPG tumors. We studied the distribution of 18F-DPA-714, a TSPO radioligand, in rats inoculated with HSJD-DIPG-007 cells. The primary DIPG human cell line HSJD-DIPG-007 highly represents this pediatric tumor, displaying the most prevalent DIPG mutations, H3F3A (K27M) and ACVR1 (R206H). Kinetic modeling and parametric imaging using the brain 18F-DPA-714 PET data enabled specific delineation of the DIPG tumor area, which is crucial for radiotherapy dose management.


Assuntos
Astrocitoma , Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Criança , Animais , Humanos , Ratos , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/metabolismo , Linhagem Celular Tumoral , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/genética , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Transporte , Modelos Animais de Doenças , Biomarcadores , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de GABA-A
3.
J Pathol Clin Res ; 9(1): 32-43, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148636

RESUMO

Fundoscopy is the standard method for diagnosis and follow-up of intraocular retinoblastoma, but it is sometimes insufficient to discern whether tumors are inactivated following treatments. In this work, we hypothesized that the amount of conserved nuclear DNA sequences in the cell-free DNA (cfDNA) fraction of the aqueous humor (AH) might complement fundoscopy for retinoblastoma follow-up. To address our hypothesis, we developed highly sensitive droplet digital polymerase chain reaction (ddPCR) methods to quantify highly conserved DNA sequences of nucleus-encoded genes (GAPDH and B4GALNT1) and of a mitochondrial gene, MT-ATP6. We obtained AH samples during intravitreal treatments. We analyzed 42 AH samples from 25 patients with intraocular retinoblastoma and 11 AH from controls (non-cancer patients). According to clinical criteria, we grouped patients as having progression-free or progressive retinoblastoma. cfDNA concentration in the AH was similar in both retinoblastoma groups. Copy counts for nucleus-derived sequences of GAPDH and B4GALNT1 were significantly higher in the AH from patients with progressive disease, compared to the AH from progression-free patients and control non-cancer patients. The presence of mitochondrial DNA in the AH explained that both retinoblastoma groups had similar cfDNA concentration in AH. The optimal cut-off point for discriminating between progressive and progression-free retinoblastomas was 108 GAPDH copies per reaction. Among patients having serial AH samples analyzed during their intravitreal chemotherapy, GAPDH copies were high and decreased below the cut-off point in those patients responding to chemotherapy. In contrast, one non-responder patient remained with values above the cut-off during follow-up, until enucleation. We conclude that the measurement of conserved nuclear gene sequences in AH allows follow-up of intraocular retinoblastoma during intravitreal treatment. The method is applicable to all patients and could be relevant for those in which fundoscopy evaluation is inconclusive.


Assuntos
Sequência de Bases , Humanos
4.
Biochem Pharmacol ; 208: 115408, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603685

RESUMO

Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) shows potent preclinical anticancer activity in pediatric solid tumors such as Ewing sarcoma, rhabdomyosarcoma and neuroblastoma, but responses in clinical trials have been modest. In this work, we aimed to discover a rational biomarker-based approach to select the right candidate patients for this treatment. We assessed the efficacy of nab-paclitaxel in 27 patient-derived xenografts (PDX), including 14 Ewing sarcomas, five rhabdomyosarcomas and several other pediatric solid tumors. Response rate (partial or complete response) was remarkable in rhabdomyosarcomas (four of five) and Ewing sarcomas (four of 14). We addressed several predictive factors of response to nab-paclitaxel such as the expression of the secreted protein acidic and rich in cysteine (SPARC), chromosomal stability of cancer cells and expression of antiapoptotic members of the B-cell lymphoma-2 (Bcl-2) family of proteins such as Bcl-2, Bcl-xL, Bcl-W and Mcl-1. Protein (immunoblotting) and gene expression of SPARC correlated positively, while immunoblotting and immunohistochemistry expression of Bcl-2 correlated negatively with the efficacy of nab-paclitaxel in Ewing sarcoma PDX. The negative correlation of Bcl-2 immunoblotting signal and activity was especially robust (r = 0.8352; P = 0.0007; Pearson correlation). Consequently, we evaluated pharmacological strategies to inhibit Bcl-2 during nab-paclitaxel treatment. We observed that the Bcl-2 inhibitor venetoclax improved the activity of nab-paclitaxel in highly resistant Bcl-2-expressing Ewing sarcoma PDX. Overall, our results suggest that low Bcl-2 expression could be used to select patients with Ewing sarcoma sensitive to nab-paclitaxel, and Bcl-2 inhibitors could improve the activity of this drug in Bcl-2-expressing Ewing sarcoma.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Rabdomiossarcoma , Sarcoma de Ewing , Criança , Humanos , Antineoplásicos/uso terapêutico , Biomarcadores , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Osteonectina/genética , Osteonectina/metabolismo , Osteonectina/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Rabdomiossarcoma/tratamento farmacológico , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/patologia
5.
EMBO Mol Med ; 14(7): e15619, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35695059

RESUMO

Low-flow vascular malformations are congenital overgrowths composed of abnormal blood vessels potentially causing pain, bleeding and obstruction of different organs. These diseases are caused by oncogenic mutations in the endothelium, which result in overactivation of the PI3K/AKT pathway. Lack of robust in vivo preclinical data has prevented the development and translation into clinical trials of specific molecular therapies for these diseases. Here, we demonstrate that the Pik3caH1047R activating mutation in endothelial cells triggers a transcriptome rewiring that leads to enhanced cell proliferation. We describe a new reproducible preclinical in vivo model of PI3K-driven vascular malformations using the postnatal mouse retina. We show that active angiogenesis is required for the pathogenesis of vascular malformations caused by activating Pik3ca mutations. Using this model, we demonstrate that the AKT inhibitor miransertib both prevents and induces the regression of PI3K-driven vascular malformations. We confirmed the efficacy of miransertib in isolated human endothelial cells with genotypes spanning most of human low-flow vascular malformations.


Assuntos
Fosfatidilinositol 3-Quinases , Malformações Vasculares , Aminopiridinas , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Imidazóis , Camundongos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Malformações Vasculares/genética , Malformações Vasculares/metabolismo , Malformações Vasculares/patologia
6.
J Pathol Clin Res ; 7(4): 338-349, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837665

RESUMO

The goals of this work were to identify factors favoring patient-derived xenograft (PDX) engraftment and study the association between PDX engraftment and prognosis in pediatric patients with Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma. We used immunodeficient mice to establish 30 subcutaneous PDX from patient tumor biopsies, with a successful engraftment rate of 44%. Age greater than 12 years and relapsed disease were patient factors associated with higher engraftment rate. Tumor type and biopsy location did not associate with engraftment. PDX models retained histology markers and most chromosomal aberrations of patient samples during successive passages in mice. Model treatment with irinotecan resulted in significant activity in 20 of the PDXs and replicated the response of rhabdomyosarcoma patients. Successive generations of PDXs responded similarly to irinotecan, demonstrating functional stability of these models. Importantly, out of 68 tumor samples from 51 patients with a median follow-up of 21.2 months, PDX engraftment from newly diagnosed patients was a prognostic factor significantly associated with poor outcome (p = 0.040). This association was not significant for relapsed patients. In the subgroup of patients with newly diagnosed Ewing sarcoma classified as standard risk, we found higher risk of relapse or refractory disease associated with those samples that produced stable PDX models (p = 0.0357). Overall, our study shows that PDX engraftment predicts worse outcome in newly diagnosed pediatric sarcoma patients.


Assuntos
Prognóstico , Sarcoma de Ewing/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Adolescente , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Xenoenxertos/efeitos dos fármacos , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Masculino , Camundongos , Osteossarcoma/tratamento farmacológico , Rabdomiossarcoma/tratamento farmacológico , Sarcoma/tratamento farmacológico , Resultado do Tratamento
7.
Pharmaceutics ; 12(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349240

RESUMO

The blood-brain barrier (BBB) hinders the brain delivery of many anticancer drugs. In pediatric patients, diffuse intrinsic pontine glioma (DIPG) represents the main cause of brain cancer mortality lacking effective drug therapy. Using sham and DIPG-bearing rats, we analyzed 1) the brain distribution of 3-kDa-Texas red-dextran (TRD) or [14C]-sucrose as measures of BBB integrity, and 2) the role of major ATP-binding cassette (ABC) transporters at the BBB on the efflux of the irinotecan metabolite [3H]-SN-38. The unaffected [14C]-sucrose or TRD distribution in the cerebrum, cerebellum, and brainstem regions in DIPG-bearing animals suggests an intact BBB. Targeted proteomics retrieved no change in P-glycoprotein (P-gp), BCRP, MRP1, and MRP4 levels in the analyzed regions of DIPG rats. In vitro, DIPG cells express BCRP but not P-gp, MRP1, or MRP4. Dual inhibition of P-gp/Bcrp, or Mrp showed a significant increase on SN-38 BBB transport: Cerebrum (8.3-fold and 3-fold, respectively), cerebellum (4.2-fold and 2.8-fold), and brainstem (2.6-fold and 2.2-fold). Elacridar increased [3H]-SN-38 brain delivery beyond a P-gp/Bcrp inhibitor effect alone, emphasizing the role of another unidentified transporter in BBB efflux of SN-38. These results confirm a well-preserved BBB in DIPG-bearing rats, along with functional ABC-transporter expression. The development of chemotherapeutic strategies to circumvent ABC-mediated BBB efflux are needed to improve anticancer drug delivery against DIPG.

8.
J Control Release ; 324: 440-449, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32497782

RESUMO

Ewing sarcoma is a bone and soft tissue tumor predominantly affecting adolescents and young adults. To characterize changes in anticancer drug activity and intratumor drug distribution during the evolution of Ewing sarcomas, we used immunodeficient mice to establish pairs of patient-derived xenografts (PDX) at early (initial diagnosis) and late (relapse or refractory progression) stages of the disease from three patients. Analysis of copy number alterations (CNA) in early passage PDX tissues showed that two tumor pairs established from patients which responded initially to therapy and relapsed more than one year later displayed similar CNAs at early and late stages. For these two patients, PDX established from late tumors were more resistant to chemotherapy (irinotecan) than early counterparts. In contrast, the tumor pair established at refractory progression showed highly dissimilar CNA profiles, and the pattern of response to chemotherapy was discordant with those of relapsed cases. In mice receiving irinotecan infusions, the level of SN-38 (active metabolite of irinotecan) in the intracellular tumor compartment was reduced in tumors at later stages compared to earlier tumors for those pairs bearing similar CNAs, suggesting that distribution of anticancer drug shifted toward the extracellular compartment during clonal tumor evolution. Overexpression of the drug transporter P-glycoprotein in late tumor was likely responsible for this shift in drug distribution in one of the cases.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Preparações Farmacêuticas , Sarcoma de Ewing , Adolescente , Animais , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Humanos , Irinotecano , Camundongos , Sarcoma de Ewing/tratamento farmacológico
9.
Sci Transl Med ; 11(476)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674657

RESUMO

Retinoblastoma is a pediatric solid tumor of the retina activated upon homozygous inactivation of the tumor suppressor RB1 VCN-01 is an oncolytic adenovirus designed to replicate selectively in tumor cells with high abundance of free E2F-1, a consequence of a dysfunctional RB1 pathway. Thus, we reasoned that VCN-01 could provide targeted therapeutic activity against even chemoresistant retinoblastoma. In vitro, VCN-01 effectively killed patient-derived retinoblastoma models. In mice, intravitreous administration of VCN-01 in retinoblastoma xenografts induced tumor necrosis, improved ocular survival compared with standard-of-care chemotherapy, and prevented micrometastatic dissemination into the brain. In juvenile immunocompetent rabbits, VCN-01 did not replicate in retinas, induced minor local side effects, and only leaked slightly and for a short time into the blood. Initial phase 1 data in patients showed the feasibility of the administration of intravitreous VCN-01 and resulted in antitumor activity in retinoblastoma vitreous seeds and evidence of viral replication markers in tumor cells. The treatment caused local vitreous inflammation but no systemic complications. Thus, oncolytic adenoviruses targeting RB1 might provide a tumor-selective and chemotherapy-independent treatment option for retinoblastoma.


Assuntos
Adenoviridae/fisiologia , Terapia de Alvo Molecular , Vírus Oncolíticos/fisiologia , Proteína do Retinoblastoma/metabolismo , Retinoblastoma/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Camundongos , Metástase Neoplásica , Coelhos , Retinoblastoma/imunologia , Retinoblastoma/patologia , Análise de Sobrevida , Distribuição Tecidual , Pesquisa Translacional Biomédica , Resultado do Tratamento , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Control Release ; 276: 59-71, 2018 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-29501533

RESUMO

We report for the first time on a nano-drug delivery system based on glucosylated polymeric nanomicelles to actively target the second-generation tyrosine kinase inhibitor dasatinib to glucose-avid pediatric sarcomas by the intravenous route. After a comprehensive physicochemical characterization that confirmed the substantially lower critical micellar concentration and the higher encapsulation capacity of the glucosylated amphiphilic nanocarrier with respect to the pristine counterpart, we showed a 9-fold decrease of the half maximal inhibitory concentration of dasatinib in a rhabdomyosarcoma cell line, Rh30, in vitro. In immunodeficient mice bearing the glucose-avid Rh30 xenograft, we revealed that the glucosylated polymeric nanomicelles increased the delivery of dasatinib in the tumor parenchyma. Conversely, the exposure of off-target tissues and organs to the drug was substantially reduced. Upon experimental confirmation that most patient-derived xenograft (PDX) models of pediatric sarcomas overexpress glucose transporter 1 (GLUT-1), we demonstrated the selective accumulation of dasatinib in a patient-derived rhabdomyosarcoma model in vivo. Conversely, the reference dose administered by the oral route was not tumor-selective. Finally, the improved nanocarrier pharmacokinetics led to prolonged median survival of mice bearing a clinically relevant PDX model of alveolar rhabdomyosarcoma from 19 days for the untreated controls to 27 days for the targeted therapy.


Assuntos
Antineoplásicos/administração & dosagem , Dasatinibe/administração & dosagem , Micelas , Nanoestruturas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Criança , Dasatinibe/farmacocinética , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacocinética , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/metabolismo
11.
PLoS One ; 12(1): e0169485, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28052119

RESUMO

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG), or high-grade brainstem glioma (BSG), is one of the major causes of brain tumor-related deaths in children. Its prognosis has remained poor despite numerous efforts to improve survival. Panobinostat, a histone deacetylase inhibitor, is a targeted agent that has recently shown pre-clinical efficacy and entered a phase I clinical trial for the treatment of children with recurrent or progressive DIPG. METHODS: A collaborative pre-clinical study was conducted using both a genetic BSG mouse model driven by PDGF-B signaling, p53 loss, and ectopic H3.3-K27M or H3.3-WT expression and an H3.3-K27M orthotopic DIPG xenograft model to confirm and extend previously published findings regarding the efficacy of panobinostat in vitro and in vivo. RESULTS: In vitro, panobinostat potently inhibited cell proliferation, viability, and clonogenicity and induced apoptosis of human and murine DIPG cells. In vivo analyses of tissue after short-term systemic administration of panobinostat to genetically engineered tumor-bearing mice indicated that the drug reached brainstem tumor tissue to a greater extent than normal brain tissue, reduced proliferation of tumor cells and increased levels of H3 acetylation, demonstrating target inhibition. Extended consecutive daily treatment of both genetic and orthotopic xenograft models with 10 or 20 mg/kg panobinostat consistently led to significant toxicity. Reduced, well-tolerated doses of panobinostat, however, did not prolong overall survival compared to vehicle-treated mice. CONCLUSION: Our collaborative pre-clinical study confirms that panobinostat is an effective targeted agent against DIPG human and murine tumor cells in vitro and in short-term in vivo efficacy studies in mice but does not significantly impact survival of mice bearing H3.3-K27M-mutant tumors. We suggest this may be due to toxicity associated with systemic administration of panobinostat that necessitated dose de-escalation.


Assuntos
Neoplasias do Tronco Encefálico/tratamento farmacológico , Engenharia Genética , Glioma/tratamento farmacológico , Ácidos Hidroxâmicos/uso terapêutico , Indóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Neoplasias do Tronco Encefálico/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Células Clonais , Glioma/patologia , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacocinética , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacocinética , Indóis/farmacologia , Concentração Inibidora 50 , Camundongos Endogâmicos C57BL , Panobinostat , Resultado do Tratamento
12.
J Control Release ; 264: 34-44, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28830790

RESUMO

Treatment of retinoblastoma -a pediatric cancer of the developing retina- might benefit from strategies to inhibit the blood-retinal barrier (BRB). The potent anticancer agent topotecan is a substrate of efflux transporters BCRP and P-gp, which are expressed at the BRB to restrict vitreous and retinal distribution of xenobiotics. In this work we have studied vitreous and retinal distribution, tumor accumulation and antitumor activity of topotecan, using pantoprazole as inhibitor of BCRP and P-gp. We used rabbit and mouse eyes as BRB models and patient-derived xenografts as retinoblastoma models. To validate the rabbit BRB model we stained BCRP and P-gp in the retinal vessels. Using intravitreous microdialysis we showed that the penetration of the rabbit vitreous by lactone topotecan increased significantly upon concomitant administration of pantoprazole (P=0.0285). Pantoprazole also increased topotecan penetration of the mouse vitreous, measured as the vitreous-to-plasma topotecan concentration ratio at the steady state (P=0.0246). Pantoprazole increased topotecan antitumor efficacy and intracellular penetration in retinoblastoma in vitro, but did not enhance intratumor drug distribution and survival in mice bearing the intraocular human tumor HSJD-RBT-2. Anatomical differences with the clinical setting likely limited our in vivo study, since xenografts were poorly vascularized masses that loaded most of the vitreous compartment. We conclude that pharmacological modulation of the BRB is feasible, enhances anticancer drug distribution into the vitreous and might have clinical implications in retinoblastoma. CHEMICAL COMPOUNDS INCLUDED IN THIS MANUSCRIPT: Topotecan (PubChem CID: 60700) Pantoprazole sodium (PubChem CID: 15008962).


Assuntos
2-Piridinilmetilsulfinilbenzimidazóis/farmacologia , Barreira Hematorretiniana/efeitos dos fármacos , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Inibidores da Topoisomerase I/uso terapêutico , Topotecan/uso terapêutico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematorretiniana/metabolismo , Humanos , Camundongos Nus , Pantoprazol , Coelhos , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Retinoblastoma/genética , Retinoblastoma/metabolismo , Inibidores da Topoisomerase I/farmacocinética , Topotecan/farmacocinética , Corpo Vítreo/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Med ; 23(4): 483-492, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28263309

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumor that is located in the pons and primarily affects children. Nearly 80% of DIPGs harbor mutations in histone H3 genes, wherein lysine 27 is substituted with methionine (H3K27M). H3K27M has been shown to inhibit polycomb repressive complex 2 (PRC2), a multiprotein complex responsible for the methylation of H3 at lysine 27 (H3K27me), by binding to its catalytic subunit EZH2. Although DIPGs with the H3K27M mutation show global loss of H3K27me3, several genes retain H3K27me3. Here we describe a mouse model of DIPG in which H3K27M potentiates tumorigenesis. Using this model and primary patient-derived DIPG cell lines, we show that H3K27M-expressing tumors require PRC2 for proliferation. Furthermore, we demonstrate that small-molecule EZH2 inhibitors abolish tumor cell growth through a mechanism that is dependent on the induction of the tumor-suppressor protein p16INK4A. Genome-wide enrichment analyses show that the genes that retain H3K27me3 in H3K27M cells are strong polycomb targets. Furthermore, we find a highly significant overlap between genes that retain H3K27me3 in the DIPG mouse model and in human primary DIPGs expressing H3K27M. Taken together, these results show that residual PRC2 activity is required for the proliferation of H3K27M-expressing DIPGs, and that inhibition of EZH2 is a potential therapeutic strategy for the treatment of these tumors.


Assuntos
Neoplasias do Tronco Encefálico/genética , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Glioma/genética , Histonas/genética , Animais , Benzamidas/farmacologia , Compostos de Bifenilo , Neoplasias Encefálicas/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Cromatografia Líquida , Inibidor p16 de Quinase Dependente de Ciclina/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Técnicas de Inativação de Genes , Glioblastoma/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Indazóis/farmacologia , Camundongos , Camundongos SCID , Terapia de Alvo Molecular , Morfolinas , Mutação , Transplante de Neoplasias , Células-Tronco Neurais , Complexo Repressor Polycomb 2/genética , Piridonas/farmacologia , Espectrometria de Massas em Tandem , Proteína Supressora de Tumor p14ARF/efeitos dos fármacos , Proteína Supressora de Tumor p14ARF/genética
14.
J Control Release ; 255: 108-119, 2017 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-28412222

RESUMO

Neuroblastoma is a pediatric solid tumor with high expression of the tumor associated antigen disialoganglioside GD2. Despite initial response to induction therapy, nearly 50% of high-risk neuroblastomas recur because of chemoresistance. Here we encapsulated the topoisomerase-I inhibitor SN-38 in polymeric nanoparticles (NPs) surface-decorated with the anti-GD2 mouse mAb 3F8 at a mean density of seven antibody molecules per NP. The accumulation of drug-loaded NPs targeted with 3F8 versus with control antibody was monitored by microdialysis in patient-derived GD2-expressing neuroblastoma xenografts. We showed that the extent of tumor penetration by SN-38 was significantly higher in mice receiving the targeted nano-drug delivery system when compared to non-targeted system or free drug. This selective penetration of the tumor extracellular fluid translated into a strong anti-tumor effect prolonging survival of mice bearing GD2-high neuroblastomas in vivo.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina/análogos & derivados , Líquido Extracelular/metabolismo , Imunoglobulina G/administração & dosagem , N-Acetilgalactosaminiltransferases/antagonistas & inibidores , Nanopartículas/administração & dosagem , Neuroblastoma/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Murinos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Camptotecina/administração & dosagem , Camptotecina/química , Camptotecina/farmacocinética , Linhagem Celular Tumoral , Pré-Escolar , Liberação Controlada de Fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoglobulina G/química , Irinotecano , Masculino , Camundongos Nus , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/imunologia , N-Acetilgalactosaminiltransferases/metabolismo , Nanopartículas/química , Neuroblastoma/tratamento farmacológico , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Lett ; 380(1): 10-9, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27319373

RESUMO

Translational research in retinoblastoma - a pediatric tumor that originates during the development of the retina - would be improved by the creation of new patient-derived models. Using tumor samples from enucleated eyes we established a new battery of preclinical models that grow in vitro in serum-free medium and in vivo in immunodeficient mice. To examine whether the new xenografts recapitulate human disease and disseminate from the retina to the central nervous system, we evaluated their histology and the presence of molecular markers of dissemination that are used in the clinical setting to detect extraocular metastases. We evaluated GD2 synthase and CRX as such markers and generated a Taqman real-time quantitative PCR method to measure CRX mRNA for rapid, sensitive and specific quantification of local and metastatic tumor burden. This approach was able to detect 1 human retinoblastoma cell in 100.000 mouse brain cells. Our research adds novel preclinical tools for the discovery of new retinoblastoma treatments for clinical translation.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/enzimologia , Movimento Celular , Proteínas de Homeodomínio/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Neoplasias Experimentais/enzimologia , Neoplasias da Retina/enzimologia , Retinoblastoma/enzimologia , Transativadores/metabolismo , Animais , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Pré-Escolar , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Lactente , Camundongos Nus , N-Acetilgalactosaminiltransferases/genética , Micrometástase de Neoplasia , Transplante de Neoplasias , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias da Retina/genética , Neoplasias da Retina/patologia , Retinoblastoma/genética , Retinoblastoma/secundário , Transdução de Sinais , Transativadores/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA