Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33468464

RESUMO

Neglected diseases caused by arenaviruses such as Lassa virus (LASV) and filoviruses like Ebola virus (EBOV) primarily afflict resource-limited countries, where antiviral drug development is often minimal. Previous studies have shown that many approved drugs developed for other clinical indications inhibit EBOV and LASV and that combinations of these drugs provide synergistic suppression of EBOV, often by blocking discrete steps in virus entry. We hypothesize that repurposing of combinations of orally administered approved drugs provides effective suppression of arenaviruses. In this report, we demonstrate that arbidol, an approved influenza antiviral previously shown to inhibit EBOV, LASV, and many other viruses, inhibits murine leukemia virus (MLV) reporter viruses pseudotyped with the fusion glycoproteins (GPs) of other arenaviruses (Junin virus [JUNV], lymphocytic choriomeningitis virus [LCMV], and Pichinde virus [PICV]). Arbidol and other approved drugs, including aripiprazole, amodiaquine, sertraline, and niclosamide, also inhibit infection of cells by infectious PICV, and arbidol, sertraline, and niclosamide inhibit infectious LASV. Combining arbidol with aripiprazole or sertraline results in the synergistic suppression of LASV and JUNV GP-bearing pseudoviruses. This proof-of-concept study shows that arenavirus infection in vitro can be synergistically inhibited by combinations of approved drugs. This approach may lead to a proactive strategy with which to prepare for and control known and new arenavirus outbreaks.


Assuntos
Antivirais/uso terapêutico , Infecções por Arenaviridae/tratamento farmacológico , Arenavirus/efeitos dos fármacos , Administração Oral , Animais , Infecções por Arenaviridae/virologia , Linhagem Celular , Chlorocebus aethiops , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Células HEK293 , Humanos , Camundongos , Estudo de Prova de Conceito , Células Vero
2.
J Clin Microbiol ; 59(12): e0077821, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34586893

RESUMO

The SARS-CoV-2 pandemic has strained manufacturing capacity worldwide, resulting in significant shortages of laboratory supplies both directly and indirectly. Such shortages include probe-based kits for detection of the Mycobacterium tuberculosis complex from positive liquid broth cultures. These shortages and possible loss of this particular assay have consequences for laboratory testing algorithms and public health in the United States. As there are no FDA-approved, commercially available options that currently exist which could immediately fill this gap, laboratories must identify alternatives and plan for modifying current testing algorithms to accommodate this change.


Assuntos
COVID-19 , Mycobacterium , Tuberculose , Humanos , Pandemias , SARS-CoV-2 , Tuberculose/diagnóstico , Estados Unidos
3.
Nature ; 514(7520): 47-53, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25171469

RESUMO

Without an approved vaccine or treatments, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. Here we show that a combination of monoclonal antibodies (ZMapp), optimized from two previous antibody cocktails, is able to rescue 100% of rhesus macaques when treatment is initiated up to 5 days post-challenge. High fever, viraemia and abnormalities in blood count and blood chemistry were evident in many animals before ZMapp intervention. Advanced disease, as indicated by elevated liver enzymes, mucosal haemorrhages and generalized petechia could be reversed, leading to full recovery. ELISA and neutralizing antibody assays indicate that ZMapp is cross-reactive with the Guinean variant of Ebola. ZMapp exceeds the efficacy of any other therapeutics described so far, and results warrant further development of this cocktail for clinical use.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Imunização Passiva , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Ebolavirus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Guiné , Cobaias , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Viremia/tratamento farmacológico , Viremia/imunologia , Viremia/virologia
4.
J Infect Dis ; 218(suppl_5): S588-S591, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29982632

RESUMO

No therapeutics are approved for the treatment of filovirus infections. Bepridil, a calcium channel blocker developed for treating angina, was identified as a potent inhibitor of filoviruses in vitro, including Ebola and Marburg viruses, and Ebola virus in vivo. We evaluated the efficacy of bepridil in a lethal mouse model of Marburg virus disease. A dose of 12 mg/kg bepridil once or twice daily resulted in 80% or 90% survival, respectively. These data confirm bepridil's broad-spectrum anti-filovirus activity warranting further investigation of bepridil, or improved compounds with a similar mechanism, as a pan-filovirus therapeutic agent.


Assuntos
Bepridil/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Doença do Vírus de Marburg/tratamento farmacológico , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Doença do Vírus de Marburg/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Células Vero
5.
J Infect Dis ; 218(suppl_5): S592-S596, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30016444

RESUMO

At the onset of the 2013-2016 epidemic of Ebola virus disease (EVD), no vaccine or antiviral medication was approved for treatment. Therefore, considerable efforts were directed towards the concept of drug repurposing or repositioning. Amiodarone, an approved multi-ion channel blocker for the treatment of cardiac arrhythmia, was reported to inhibit filovirus entry in vitro. Compassionate use of amiodarone in EVD patients indicated a possible survival benefit. In support of further clinical testing, we confirmed anti-Ebola virus activity of amiodarone in different cell types. Despite promising in vitro results, amiodarone failed to protect guinea pigs from a lethal dose of Ebola virus.


Assuntos
Amiodarona/farmacologia , Ebolavirus/efeitos dos fármacos , Amiodarona/farmacocinética , Amiodarona/uso terapêutico , Animais , Chlorocebus aethiops , Feminino , Cobaias , Doença pelo Vírus Ebola/tratamento farmacológico , Masculino , Células Vero
6.
J Infect Dis ; 218(suppl_5): S636-S648, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30010950

RESUMO

Transchromosomic bovines (Tc-bovines) adaptively produce fully human polyclonal immunoglobulin (Ig)G antibodies after exposure to immunogenic antigen(s). The National Interagency Confederation for Biological Research and collaborators rapidly produced and then evaluated anti-Ebola virus IgG immunoglobulins (collectively termed SAB-139) purified from Tc-bovine plasma after sequential hyperimmunization with an Ebola virus Makona isolate glycoprotein nanoparticle vaccine. SAB-139 was characterized by several in vitro production, research, and clinical level assays using wild-type Makona-C05 or recombinant virus/antigens from different Ebola virus variants. SAB-139 potently activates natural killer cells, monocytes, and peripheral blood mononuclear cells and has high-binding avidity demonstrated by surface plasmon resonance. SAB-139 has similar concentrations of galactose-α-1,3-galactose carbohydrates compared with human-derived intravenous Ig, and the IgG1 subclass antibody is predominant. All rhesus macaques infected with Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 and treated with sufficient SAB-139 at 1 day (n = 6) or 3 days (n = 6) postinfection survived versus 0% of controls. This study demonstrates that Tc-bovines can produce pathogen-specific human Ig to prevent and/or treat patients when an emerging infectious disease either threatens to or becomes an epidemic.


Assuntos
Anticorpos Antivirais/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/tratamento farmacológico , Imunoglobulina G/uso terapêutico , Animais , Bovinos , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Masculino , Células Vero
7.
J Infect Dis ; 218(suppl_5): S672-S678, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29939303

RESUMO

Background: A need to develop therapeutics to treat Ebola virus disease patients in remote and resource-challenged settings remains in the wake of the 2013-2016 epidemic in West Africa. Toward this goal, we screened drugs under consideration as treatment options and other drugs of interest, most being small molecules approved by the Food and Drug Administration. Drugs demonstrating in vitro antiviral activity were advanced for evaluation in combinations because of advantages often provided by drug cocktails. Methods: Drugs were screened for blockade of Ebola virus infection in cultured cells. Twelve drugs were tested in all (78 pair-wise) combinations, and 3 were tested in a subset of combinations. Results: Multiple synergistic drug pairs emerged, with the majority comprising 2 entry inhibitors. For the pairs of entry inhibitors studied, synergy was demonstrated at the level of virus entry into host cells. Highly synergistic pairs included aripiprazole/piperacetazine, sertraline/toremifene, sertraline/bepridil, and amodiaquine/clomiphene. Conclusions: Our study shows the feasibility of identifying pairs of approved drugs that synergistically block Ebola virus infection in cell cultures. We discuss our findings in terms of the theoretic ability of these or alternate combinations to reach therapeutic levels. Future research will assess selected combinations in small-animal models of Ebola virus disease.


Assuntos
Antivirais/administração & dosagem , Ebolavirus/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Chlorocebus aethiops , Aprovação de Drogas , Sinergismo Farmacológico , Quimioterapia Combinada , Células Vero , Vírion/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
8.
J Virol ; 91(17)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615211

RESUMO

The recent Ebola virus (EBOV) epidemic in West Africa demonstrates the potential for a significant public health burden caused by filoviral infections. No vaccine or antiviral is currently FDA approved. To expand the vaccine options potentially available, we assessed protection conferred by an EBOV vaccine composed of vesicular stomatitis virus pseudovirions that lack native G glycoprotein (VSVΔG) and bear EBOV glycoprotein (GP). These pseudovirions mediate a single round of infection. Both single-dose and prime/boost vaccination regimens protected mice against lethal challenge with mouse-adapted Ebola virus (ma-EBOV) in a dose-dependent manner. The prime/boost regimen provided significantly better protection than a single dose. As N-linked glycans are thought to shield conserved regions of the EBOV GP receptor-binding domain (RBD), thereby blocking epitopes within the RBD, we also tested whether VSVΔG bearing EBOV GPs that lack GP1 N-linked glycans provided effective immunity against challenge with ma-EBOV or a more distantly related virus, Sudan virus. Using a prime/boost strategy, high doses of GP/VSVΔG partially or fully denuded of N-linked glycans on GP1 protected mice against ma-EBOV challenge, but these mutants were no more effective than wild-type (WT) GP/VSVΔG and did not provide cross protection against Sudan virus. As reported for other EBOV vaccine platforms, the protection conferred correlated with the quantity of EBOV GP-specific Ig produced but not with the production of neutralizing antibodies. Our results show that EBOV GP/VSVΔG pseudovirions serve as a successful vaccination platform in a rodent model of Ebola virus disease and that GP1 N-glycan loss does not influence immunogenicity or vaccination success.IMPORTANCE The West African Ebola virus epidemic was the largest to date, with more than 28,000 people infected. No FDA-approved vaccines are yet available, but in a trial vaccination strategy in West Africa, recombinant, infectious VSV encoding the Ebola virus glycoprotein effectively prevented virus-associated disease. VSVΔG pseudovirion vaccines may prove as efficacious and have better safety, but they have not been tested to date. Thus, we tested the efficacy of VSVΔG pseudovirions bearing Ebola virus glycoprotein as a vaccine platform. We found that wild-type Ebola virus glycoprotein, in the context of this platform, provides robust protection of EBOV-challenged mice. Further, we found that removal of the heavy glycan shield surrounding conserved regions of the glycoprotein does not enhance vaccine efficacy.

9.
Curr Top Microbiol Immunol ; 411: 263-290, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28653190

RESUMO

Therapies for filovirus infections are urgently needed. The paradoxical issue facing therapies is the need for rigorous safety and efficacy testing, adhering to the principle tenant of medicine to do no harm, while responding to the extreme for a treatment option during an outbreak. Supportive care remains a primary goal for infected patients. Years of research into filoviruses has provided possible medical interventions ranging from direct antivirals, host-factor supportive approaches, and passive immunity. As more basic research is directed toward understanding these pathogens and their impact on the host, effective approaches to treat patients during infection will be identified. The ability to manage outbreaks with medical interventions beyond supportive care will require clinical trial design that will balance the benefits of the patient and scientific community.


Assuntos
Infecções por Filoviridae/terapia , Antivirais/efeitos adversos , Antivirais/uso terapêutico , Ensaios Clínicos como Assunto/métodos , Surtos de Doenças , Infecções por Filoviridae/virologia , Humanos
10.
Curr Top Microbiol Immunol ; 411: 171-193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28643203

RESUMO

Ebola virus disease (EVD) in humans is associated with four ebolaviruses: Ebola virus (EBOV), Sudan virus (SUDV), Bundibugyo virus (BDBV), and Taï Forest virus. To date, no documented cases of human disease have been associated with Reston virus. Here, we describe the nonhuman primate (NHP) models that currently serve as gold standards for testing ebolavirus vaccines and therapeutic agents and elucidating underlying mechanisms of pathogenesis. Although multiple models have been explored over the past 50 years, the predominance of published work has been performed in macaque models. This chapter will focus on the most commonly used models.


Assuntos
Modelos Animais de Doenças , Ebolavirus , Doença pelo Vírus Ebola , Macaca/virologia , Animais , Ebolavirus/classificação , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/terapia , Doença pelo Vírus Ebola/virologia , Humanos
11.
J Infect Dis ; 215(9): 1416-1420, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368541

RESUMO

Previous studies have demonstrated little efficacy of interferons (IFNs) in animal models of Ebola virus disease. However, these studies were limited to a small number of type I IFNs and, during the most recent outbreak of Ebola virus, questions regarding the suitability of the animal models to evaluate IFNs were raised. To address the potential that anti-Ebola virus activity was overlooked, type I and type II IFNs (α-2a, α-2b, -ß, -γ, and -universal) were tested in a variety of cell types (Vero E6, Huh 7 cells, and human macrophages). IFNs are weak inhibitors of Ebola virus Makona in these cell lines.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Interferon beta/farmacologia , Interferon gama/farmacologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Células Vero
12.
PLoS Pathog ; 11(6): e1005016, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26115029

RESUMO

The filoviruses, which include the marburg- and ebolaviruses, have caused multiple outbreaks among humans this decade. Antibodies against the filovirus surface glycoprotein (GP) have been shown to provide life-saving therapy in nonhuman primates, but such antibodies are generally virus-specific. Many monoclonal antibodies (mAbs) have been described against Ebola virus. In contrast, relatively few have been described against Marburg virus. Here we present ten mAbs elicited by immunization of mice using recombinant mucin-deleted GPs from different Marburg virus (MARV) strains. Surprisingly, two of the mAbs raised against MARV GP also cross-react with the mucin-deleted GP cores of all tested ebolaviruses (Ebola, Sudan, Bundibugyo, Reston), but these epitopes are masked differently by the mucin-like domains themselves. The most efficacious mAbs in this panel were found to recognize a novel "wing" feature on the GP2 subunit that is unique to Marburg and does not exist in Ebola. Two of these anti-wing antibodies confer 90 and 100% protection, respectively, one hour post-exposure in mice challenged with MARV.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Doença pelo Vírus Ebola/imunologia , Imunização , Doença do Vírus de Marburg/prevenção & controle , Marburgvirus/imunologia , Animais , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Ebolavirus/imunologia , Feminino , Masculino , Doença do Vírus de Marburg/imunologia , Camundongos Endogâmicos BALB C
13.
Proc Natl Acad Sci U S A ; 111(48): 17182-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404321

RESUMO

Ebola virus (EBOV) and related filoviruses cause severe hemorrhagic fever, with up to 90% lethality, and no treatments are approved for human use. Multiple recent outbreaks of EBOV and the likelihood of future human exposure highlight the need for pre- and postexposure treatments. Monoclonal antibody (mAb) cocktails are particularly attractive candidates due to their proven postexposure efficacy in nonhuman primate models of EBOV infection. Two candidate cocktails, MB-003 and ZMAb, have been extensively evaluated in both in vitro and in vivo studies. Recently, these two therapeutics have been combined into a new cocktail named ZMapp, which showed increased efficacy and has been given compassionately to some human patients. Epitope information and mechanism of action are currently unknown for most of the component mAbs. Here we provide single-particle EM reconstructions of every mAb in the ZMapp cocktail, as well as additional antibodies from MB-003 and ZMAb. Our results illuminate key and recurring sites of vulnerability on the EBOV glycoprotein and provide a structural rationale for the efficacy of ZMapp. Interestingly, two of its components recognize overlapping epitopes and compete with each other for binding. Going forward, this work now provides a basis for strategic selection of next-generation antibody cocktails against Ebola and related viruses and a model for predicting the impact of ZMapp on potential escape mutations in ongoing or future Ebola outbreaks.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Epitopos/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Antivirais/química , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Sítios de Ligação de Anticorpos/imunologia , Linhagem Celular , Ebolavirus/metabolismo , Epitopos/química , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Fragmentos Fab das Imunoglobulinas/imunologia , Microscopia Eletrônica , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas Virais/imunologia
14.
Proc Natl Acad Sci U S A ; 111(24): 8873-6, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24912183

RESUMO

Infectious disease has only recently been recognized as a major threat to the survival of Endangered chimpanzees and Critically Endangered gorillas in the wild. One potentially powerful tool, vaccination, has not been deployed in fighting this disease threat, in good part because of fears about vaccine safety. Here we report on what is, to our knowledge, the first trial in which captive chimpanzees were used to test a vaccine intended for use on wild apes rather than humans. We tested a virus-like particle vaccine against Ebola virus, a leading source of death in wild gorillas and chimpanzees. The vaccine was safe and immunogenic. Captive trials of other vaccines and of methods for vaccine delivery hold great potential as weapons in the fight against wild ape extinction.


Assuntos
Controle de Doenças Transmissíveis , Vacinas contra Ebola/uso terapêutico , Doença pelo Vírus Ebola/prevenção & controle , Pan troglodytes/imunologia , Vacinação , Animais , Animais Selvagens , Doenças Transmissíveis/imunologia , Ilhas de CpG , Modelos Animais de Doenças , Espécies em Perigo de Extinção , Feminino , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
15.
Clin Infect Dis ; 62(2): 214-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26354968

RESUMO

There are 4 families of viruses that cause viral hemorrhagic fever (VHF), including Filoviridae. Ebola virus is one virus within the family Filoviridae and the cause of the current outbreak of VHF in West Africa. VHF-endemic areas are found throughout the world, yet traditional diagnosis of VHF has been performed in large reference laboratories centered in Europe and the United States. The large amount of capital needed, as well as highly trained and skilled personnel, has limited the availability of diagnostics in endemic areas except in conjunction with governmental and nongovernmental entities. However, rapid diagnosis of VHF is essential to efforts that will limit outbreaks. In addition, increased global travel suggests VHF diagnoses may be made outside of the endemic areas. Thus, understanding how to diagnose VHF is imperative for laboratories worldwide. This article reviews traditional and current diagnostic modalities for VHF.


Assuntos
Testes Diagnósticos de Rotina/métodos , Febres Hemorrágicas Virais/diagnóstico , Saúde Global , Humanos
17.
J Virol ; 89(19): 9932-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202243

RESUMO

UNLABELLED: Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE: Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. Our results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy.


Assuntos
Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Marburgvirus/efeitos dos fármacos , Marburgvirus/fisiologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/farmacologia , Benzotropina/farmacologia , Linhagem Celular , Chlorocebus aethiops , Ciproeptadina/farmacologia , Ebolavirus/patogenicidade , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Heparina/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Macrolídeos/farmacologia , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/patogenicidade , Receptores Acoplados a Proteínas G/fisiologia , Bibliotecas de Moléculas Pequenas , Células Vero , Zidovudina/farmacologia
18.
J Virol ; 89(10): 5441-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25741008

RESUMO

UNLABELLED: Filoviruses, including both Ebola virus (EBOV) and Marburg virus (MARV), can infect humans and other animals, causing hemorrhagic fever with a high mortality rate. Entry of these viruses into the host is mediated by a single filoviral glycoprotein (GP). GP is composed of two subunits: GP1, which is responsible for attachment and binding to receptor(s) on susceptible cells, and GP2, which mediates viral and cell membrane fusion. Although numerous host factors have been implicated in the entry process, the initial attachment receptor(s) has not been well defined. In this report, we demonstrate that exostosin 1 (EXT1), which is involved in biosynthesis of heparan sulfate (HS), plays a role in filovirus entry. Expression knockdown of EXT1 by small interfering RNAs (siRNAs) impairs GP-mediated pseudoviral entry and that of infectious EBOV and MARV in tissue cultured cells. Furthermore, HS, heparin, and other related glycosaminoglycans (GAGs), to different extents, can bind to and block GP-mediated viral entry and that of infectious filoviruses. These results strongly suggest that HS and other related GAGs are attachment receptors that are utilized by filoviruses for entry and infection. These GAGs may have therapeutic potential in treating EBOV- and MARV-infected patients. IMPORTANCE: Infection by Ebola virus and Marburg virus can cause severe illness in humans, with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The ongoing 2014 outbreak in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we provide several pieces of evidence that demonstrate that heparan sulfate and other closely related glycosaminoglycans are the molecules that are used by filoviruses for initial attachment. Furthermore, we demonstrate that these glycosaminoglycans can block entry of and infection by filoviruses. Thus, this work provides mechanistic insights on the early step of filoviral infection and suggests a possible therapeutic option for diseases caused by filovirus infection.


Assuntos
Filoviridae/fisiologia , Glicosaminoglicanos/fisiologia , N-Acetilglucosaminiltransferases/fisiologia , Internalização do Vírus , Animais , Linhagem Celular , Ebolavirus/patogenicidade , Ebolavirus/fisiologia , Filoviridae/patogenicidade , Infecções por Filoviridae/etiologia , Infecções por Filoviridae/virologia , Técnicas de Silenciamento de Genes , Células HEK293 , Heparina/fisiologia , Heparitina Sulfato/biossíntese , Heparitina Sulfato/deficiência , Interações Hospedeiro-Patógeno , Humanos , Marburgvirus/patogenicidade , Marburgvirus/fisiologia , Camundongos , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , Receptores Virais/fisiologia , Proteínas Virais/fisiologia , Virulência
19.
Antimicrob Agents Chemother ; 59(2): 1088-99, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25487801

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus, and infections with this virus can result in acute respiratory syndrome with renal failure. Globally, MERS-CoV has been responsible for 877 laboratory-confirmed infections, including 317 deaths, since September 2012. As there is a paucity of information regarding the molecular pathogenesis associated with this virus or the identities of novel antiviral drug targets, we performed temporal kinome analysis on human hepatocytes infected with the Erasmus isolate of MERS-CoV with peptide kinome arrays. bioinformatics analysis of our kinome data, including pathway overrepresentation analysis (ORA) and functional network analysis, suggested that extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling responses were specifically modulated in response to MERS-CoV infection in vitro throughout the course of infection. The overrepresentation of specific intermediates within these pathways determined by pathway and functional network analysis of our kinome data correlated with similar patterns of phosphorylation determined through Western blot array analysis. In addition, analysis of the effects of specific kinase inhibitors on MERS-CoV infection in tissue culture models confirmed these cellular response observations. Further, we have demonstrated that a subset of licensed kinase inhibitors targeting the ERK/MAPK and PI3K/AKT/mTOR pathways significantly inhibited MERS-CoV replication in vitro whether they were added before or after viral infection. Taken together, our data suggest that ERK/MAPK and PI3K/AKT/mTOR signaling responses play important roles in MERS-CoV infection and may represent novel drug targets for therapeutic intervention strategies.


Assuntos
Infecções por Coronavirus/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Western Blotting , Linhagem Celular , Biologia Computacional , Infecções por Coronavirus/virologia , Ensaio de Imunoadsorção Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Fosforilação , Transdução de Sinais/fisiologia
20.
Proc Natl Acad Sci U S A ; 109(44): 18030-5, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23071322

RESUMO

Filovirus infections can cause a severe and often fatal disease in humans and nonhuman primates, including great apes. Here, three anti-Ebola virus mouse/human chimeric mAbs (c13C6, h-13F6, and c6D8) were produced in Chinese hamster ovary and in whole plant (Nicotiana benthamiana) cells. In pilot experiments testing a mixture of the three mAbs (MB-003), we found that MB-003 produced in both manufacturing systems protected rhesus macaques from lethal challenge when administered 1 h postinfection. In a pivotal follow-up experiment, we found significant protection (P < 0.05) when MB-003 treatment began 24 or 48 h postinfection (four of six survived vs. zero of two controls). In all experiments, surviving animals that received MB-003 experienced little to no viremia and had few, if any, of the clinical symptoms observed in the controls. The results represent successful postexposure in vivo efficacy by a mAb mixture and suggest that this immunoprotectant should be further pursued as a postexposure and potential therapeutic for Ebola virus exposure.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doença pelo Vírus Ebola/prevenção & controle , Planticorpos/uso terapêutico , Animais , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Cricetinae , Cricetulus , Macaca mulatta , Planticorpos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA