Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 86(1): 86-96, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35809121

RESUMO

Skin harbors an important microbial ecosystem - the skin microbiota that is in homeostasis with its host and is beneficial for human health. Cosmetic products have the potential to interfere with this microbial community; therefore their impact should be assessed. The aim of this review is to highlight the importance of skin microbiota in the cosmetic industry. Several studies determined that cosmetic ingredients have the potential to disrupt the skin microbiota equilibrium leading to the development of skin diseases and dysregulation of immune response. These studies led their investigation by using different methodologies and models, concluding that methods must be chosen according to the aim of the study, the skin site to be evaluated, and the target population of the cosmetics. Overall, it is crucial to test the impact of cosmetics in the skin microbiota and to stablish standard procedures, as well as specific criteria that allow to classify a cosmetic product as skin microbiota friendly.


Assuntos
Cosméticos , Interações entre Hospedeiro e Microrganismos , Microbiota , Pele , Humanos , Cosméticos/farmacologia , Homeostase , Microbiota/efeitos dos fármacos , Pele/microbiologia , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Indústrias/normas , Indústrias/tendências
2.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901850

RESUMO

In the last decade, selectively tuned bio-based polyesters have been increasingly used for their clinical potential in several biomedical applications, such as tissue engineering, wound healing, and drug delivery. With a biomedical application in mind, a flexible polyester was produced by melt polycondensation using the microbial oil residue collected after the distillation of ß-farnesene (FDR) produced industrially by genetically modified yeast, Saccharomyces cerevisiae. After characterization, the polyester exhibited elongation up to 150% and presented Tg of -51.2 °C and Tm of 169.8 °C. In vitro degradation revealed a mass loss of about 87% after storage in PBS solution for 11 weeks under accelerated conditions (40 °C, RH = 75%). The water contact angle revealed a hydrophilic character, and biocompatibility with skin cells was demonstrated. 3D and 2D scaffolds were produced by salt-leaching, and a controlled release study at 30 °C was performed with Rhodamine B base (RBB, 3D) and curcumin (CRC, 2D), showing a diffusion-controlled mechanism with about 29.3% of RBB released after 48 h and 50.4% of CRC after 7 h. This polymer offers a sustainable and eco-friendly alternative for the potential use of the controlled release of active principles for wound dressing applications.


Assuntos
Poliésteres , Engenharia Tecidual , Poliésteres/química , Preparações de Ação Retardada , Polímeros , Interações Hidrofóbicas e Hidrofílicas
3.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902255

RESUMO

Difficult-to-treat infections make complex wounds a problem of great clinical and socio-economic impact. Moreover, model therapies of wound care are increasing antibiotic resistance and becoming a critical problem, beyond healing. Therefore, phytochemicals are promising alternatives, with both antimicrobial and antioxidant activities to heal, strike infection, and the inherent microbial resistance. Hereupon, chitosan (CS)-based microparticles (as CM) were designed and developed as carriers of tannic acid (TA). These CMTA were designed to improve TA stability, bioavailability, and delivery in situ. The CMTA were prepared by spray dryer technique and were characterized regarding encapsulation efficiency, kinetic release, and morphology. Antimicrobial potential was evaluated against methicillin-resistant and methicillin-sensitive Staphylococcus aureus (MRSA and MSSA), Staphylococcus epidermidis, Escherichia coli, Candida albicans, and Pseudomonas aeruginosa strains, as common wound pathogens, and the agar diffusion inhibition growth zones were tested for antimicrobial profile. Biocompatibility tests were performed using human dermal fibroblasts. CMTA had a satisfactory product yield of ca. 32% and high encapsulation efficiency of ca. 99%. Diameters were lower than 10 µm, and the particles showed a spherical morphology. The developed microsystems were also antimicrobial for representative Gram+, Gram-, and yeast as common wound contaminants. CMTA improved cell viability (ca. 73%) and proliferation (ca. 70%) compared to free TA in solution and even compared to the physical mixture of CS and TA in dermal fibroblasts.


Assuntos
Anti-Infecciosos , Quitosana , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Infecção dos Ferimentos , Humanos , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Quitosana/uso terapêutico , Taninos/química , Infecção dos Ferimentos/tratamento farmacológico , Antibacterianos/farmacologia
4.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203191

RESUMO

Natural and sustainable anti-aging ingredients have gained attention from the cosmetic industry. This study evaluated the anti-aging potential of a sugarcane straw extract-based (SSE) cosmetic ingredient. First, cytotoxicity tests were assessed in keratinocytes and fibroblast cell lines, and sensitization was carried out through the direct peptide reactivity assay. Subsequently, various anti-aging properties were investigated, including inhibiting skin aging-related enzymes, promoting elastin and hyaluronic acid synthesis, and anti-pollution activity. Finally, a permeability assay using a synthetic membrane resembling skin was conducted. The results demonstrated that the SSE ingredient effectively inhibited elastase (55%), collagenase (25%), and tyrosinase (47%) while promoting hyaluronic acid production at non-cytotoxic and low-sensitizer concentrations. Moreover, it reduced the inflammatory response provoked by urban pollution, as evidenced by decreased levels of IL1-α and IL-6. However, it was observed that the phenolic compounds predominantly reached the skin's surface, indicating a limited ability to penetrate deeper layers of the skin. Therefore, it can be concluded that the SSE ingredient holds anti-aging properties, albeit with limited penetration into deeper skin layers. Further research and formulation advancements are needed to optimize the ingredient's ability to reach and exert its effects in deeper skin layers.


Assuntos
Ácido Hialurônico , Saccharum , Queratinócitos , Monofenol Mono-Oxigenase
5.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768709

RESUMO

Cannabidiol (CBD) and cannabigerol (CBG) are two pharmacologically active phytocannabinoids of Cannabis sativa L. Their antimicrobial activity needs further elucidation, particularly for CBG, as reports on this cannabinoid are scarce. We investigated CBD and CBG's antimicrobial potential, including their ability to inhibit the formation and cause the removal of biofilms. Our results demonstrate that both molecules present activity against planktonic bacteria and biofilms, with both cannabinoids removing mature biofilms at concentrations below the determined minimum inhibitory concentrations. We report for the first time minimum inhibitory and lethal concentrations for Pseudomonas aeruginosa and Escherichia coli (ranging from 400 to 3180 µM), as well as the ability of cannabinoids to inhibit Staphylococci adhesion to keratinocytes, with CBG demonstrating higher activity than CBD. The value of these molecules as preservative ingredients for cosmetics was also assayed, with CBG meeting the USP 51 challenge test criteria for antimicrobial effectiveness. Further, the exact formulation showed no negative impact on skin microbiota. Our results suggest that phytocannabinoids can be promising topical antimicrobial agents when searching for novel therapeutic candidates for different skin conditions. Additional research is needed to clarify phytocannabinoids' mechanisms of action, aiming to develop practical applications in dermatological use.


Assuntos
Canabidiol , Canabinoides , Cannabis , Canabidiol/farmacologia , Canabinoides/farmacologia , Pele
6.
Appl Microbiol Biotechnol ; 106(18): 5879-5891, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36008565

RESUMO

Postbiotics are a new class of health-promoting molecules that derive from probiotics. These new cosmetic and dermatological ingredients are defined as a 'preparation of inanimate microorganisms and/or their components that confers a health benefit on the host'. This review focuses on what is presently known of these compounds, the benefits of using them, the main postbiotics products available in the market and players, the production key trends and available production methods. The main advantages identified for the use of postbiotics are related to their higher specificity of action on resident microbiota as of interaction with cells of the host compared to probiotics. Postbiotics can be produced/obtained especially through fermentative processes, but most of companies industrial processes are patented. Most of these compounds are usually derived from lactic acid bacteria, Lactobacillus genera and/or yeasts, especially Saccharomyces cerevisiae. Postbiotics go from metabolites like teichoic acids to polysaccharides among others and exhibit important biological properties such as antioxidant, anti-inflammatory, anti-proliferative and immunomodulatory-the reason why their use in cosmetic formulations must be considered. Besides that, when compared to probiotics, postbiotics have longer shelf life and greater safety and do not require viability in the topical formulation which turns them into an innovative approach within the cosmetic ingredients market. The main players are companies that operate in several areas, such as the chemical industry, food innovation, pharmaceutical and cosmetic industries, and the critical trends for production of these compounds include energy efficiency, emission-free mobility, conservation of finite resources and renewable raw material utilization. KEY POINTS: • Postbiotics are mainly derived from lactic acid bacteria and S. cerevisiae. • Postbiotics exhibit several biological properties. • Postbiotics present several advantages over probiotics.


Assuntos
Lactobacillales , Probióticos , Fermentação , Lactobacillus/metabolismo , Saccharomyces cerevisiae
7.
Molecules ; 27(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408647

RESUMO

Calcium plays an important role in barrier function repair and skin homeostasis. In particular, calcium phosphates (CaPs) are well established materials for biomedical engineering due to their biocompatibility. To generate biomaterials with a more complete set of biological properties, previously discarded silk sericin (SS) has been recovered and used as a template to grow CaPs. Crucial characteristics for skin applications, such as antibacterial activity, can be further enhanced by doping CaPs with cerium (Ce) ions. The effectiveness of cell attachment and growth on the materials highly depends on their morphology, particle size distribution, and chemical composition. These characteristics can be tailored through the application of oscillatory flow technology, which provides precise mixing control of the reaction medium. Thus, in the present work, CaP/SS and CaP/SS/Ce particles were fabricated for the first time using a modular oscillatory flow plate reactor (MOFPR) in a continuous mode. Furthermore, the biological behavior of both these composites and of previously produced pure CaPs was assessed using human dermal fibroblasts (HDFs). It was demonstrated that both CaP based with plate-shaped nanoparticles and CaP-SS-based composites significantly improved cell viability and proliferation over time. The results obtained represent a first step towards the reinvention of CaPs for skin engineering.


Assuntos
Sericinas , Seda , Materiais Biocompatíveis/química , Cálcio , Fosfatos de Cálcio , Humanos , Sericinas/química , Sericinas/farmacologia , Seda/química , Pele
8.
J Mater Sci Mater Med ; 30(2): 27, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747338

RESUMO

Guided tissue regeneration (GTR) is a surgical procedure applied in the reconstruction of periodontal defects, where an occlusive membrane is used to prevent the fast-growing connective tissue from migrating into the defect. In this work, silk fibroin (SF) membranes were developed for periodontal guided tissue regeneration. Solutions of SF with glycerol (GLY) or polyvinyl alcohol (PVA) where prepared at several weight ratios up to 30%, followed by solvent casting and thermal annealing at 85 °C for periods of 6 and 12 h to produce high flexible and stable membranes. These were characterized in terms of their morphology, physical integrity, chemical structure, mechanical and thermal properties, swelling capability and in vitro degradation behavior. The developed blended membranes exhibited high ductility, which is particular relevant considering the need for physical handling and adaptability to the defect. Moreover, the membranes were cultured with human periodontal ligament fibroblast cells (hPDLs) up to 7 days. Also, the higher hydrophilicity and consequent in vitro proteolytic degradability of these blends was superior to pure silk fibroin membranes. In particular SF/GLY blends demonstrated to support high cell adhesion and viability with an adequate hPDLs' morphology, make them excellent candidates for applications in periodontal regeneration.


Assuntos
Fibroínas/química , Regeneração Tecidual Guiada Periodontal/métodos , Animais , Bombyx , Adesão Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Fibroblastos/metabolismo , Glicerol/química , Temperatura Alta , Humanos , Membranas Artificiais , Ligamento Periodontal/efeitos dos fármacos , Álcool de Polivinil/química , Regeneração , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração , Alicerces Teciduais/química
9.
Molecules ; 24(5)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823685

RESUMO

Aerogels from natural polymers are endowed with attractive textural and biological properties for biomedical applications due to their high open mesoporosity, low density, and reduced toxicity. Nevertheless, the lack of macroporosity in the aerogel structure and of a sterilization method suitable for these materials restrict their use for regenerative medicine purposes and prompt the research on getting ready-to-implant dual (macro + meso)porous aerogels. In this work, zein, a family of proteins present in materials for tissue engineering, was evaluated as a sacrificial porogen to obtain macroporous starch aerogels. This approach was particularly advantageous since it could be integrated in the conventional aerogel processing method without extra leaching steps. Physicochemical, morphological, and mechanical characterization were performed to study the effect of porogen zein at various proportions (0:1, 1:2, and 1:1 zein:starch weight ratio) on the properties of the obtained starch-based aerogels. From a forward-looking perspective for its clinical application, a supercritical CO2 sterilization treatment was implemented for these aerogels. The sterilization efficacy and the influence of the treatment on the aerogel final properties were evaluated mainly in terms of absence of microbial growth, cytocompatibility, as well as physicochemical, structural, and mechanical modifications.


Assuntos
Géis/química , Porosidade , Amido/química , Engenharia Tecidual , Dióxido de Carbono/química , Humanos , Polímeros/química , Próteses e Implantes
10.
Nutr Neurosci ; 21(1): 33-39, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27472404

RESUMO

OBJECTIVES: Obesity is a chronic disease frequently associated with serious co-morbidities, such as diabetes type II, metabolic syndrome, and psychiatric disorders. Little is known, however, regarding the behavioral consequences of modified diet constituents and the propensity to development of stress related disorders. Thus, the aim of this study was to verify whether chronic exposure to a normocaloric/high-carbohydrate diet will modify the animal's behavior after different stressful stimuli. METHODS: BALB/c mice were fed for 12 weeks with a standard chow diet or high refined carbohydrate-containing diet (HC). Following this period, independent groups of animals were exposed to different stress paradigms: 1 - two hours of restraint stress followed by exposure to the Elevated Plus Maze test (EPM) 24 hours later; 2 - The contextual fear conditioning (CFC) test and 3 - the tail suspension test (TST). RESULTS: Despite no change on total body weight, animals fed with HC diet showed increase in serum leptin levels and higher adiposity compared to diet control group. In behavioral tests, animals from HC diet group displayed reduction in the percentage of entries into the open arms of the EPM, evaluated 24 hours after restraint stress, suggesting an anxiogenic-like effect. It is also observed increase in aversive memory in the CFC test and depressive-like behavior in TST. DISCUSSION: Our results suggest that a moderate obesity, induced by high refined carbohydrate diet, may facilitate the development of anxiety and depressive-like behaviors after the stress. The mechanisms responsible for such effects remain to be elucidated.


Assuntos
Ansiedade/diagnóstico , Depressão/diagnóstico , Dieta da Carga de Carboidratos/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Estresse Psicológico , Animais , Ansiedade/etiologia , Comportamento Animal/efeitos dos fármacos , Peso Corporal , Depressão/etiologia , Dieta , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C
12.
Toxins (Basel) ; 16(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38393149

RESUMO

Viper venom phospholipase A2 enzymes (vvPLA2s) and phospholipase A2-like (PLA2-like) proteins are two of the principal toxins in viper venom that are responsible for the severe myotoxic and neurotoxic effects caused by snakebite envenoming, among other pathologies. As snakebite envenoming is the deadliest neglected tropical disease, a complete understanding of these proteins' properties and their mechanisms of action is urgently needed. Therefore, we created a database comprising information on the holo-form, cofactor-bound 3D structure of 217 vvPLA2 and PLA2-like proteins in their physiologic environment, as well as 79 membrane-bound viper species from 24 genera, which we have made available to the scientific community to accelerate the development of new anti-snakebite drugs. In addition, the analysis of the sequenced, 3D structure of the database proteins reveals essential aspects of the anatomy of the proteins, their toxicity mechanisms, and the conserved binding site areas that may anchor universal interspecific inhibitors. Moreover, it pinpoints hypotheses for the molecular origin of the myotoxicity of the PLA2-like proteins. Altogether, this study provides an understanding of the diversity of these toxins and how they are conserved, and it indicates how to develop broad, interspecies, efficient small-molecule inhibitors to target the toxin's many mechanisms of action.


Assuntos
Mordeduras de Serpentes , Venenos de Víboras , Humanos , Venenos de Víboras/química , Fosfolipases A2/química , Miotoxicidade , Sítios de Ligação
13.
Biotechnol J ; 19(2): e2300465, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403437

RESUMO

This work aimed to study for the first time the effects of phenolic compounds from sugarcane syrup on Saccharomyces cerevisiae ß-farnesene fermentation by removing them from this feedstock. Syrup purification was optimized through a central composite design using five types of activated charcoal: three contact times (1-24 h) and three adsorbent concentrations (10-150 g L-1 ). The optimal purification condition-charcoal pellets at 115 g L-1 and contact time of 12.5 h-led to 96.7% of phenolic compounds removal and 43.7% of syrup recovery. The effects of reducing phenolic content from approximately 7.0-0.3 mg L-1 in sugarcane syrup on yeast fermentation varied with the scale. An increase in biomolecule productivity was only observed in shake-flasks (11%) and in biomass productivity only in the 2 L bioreactor (12%). Thus, phenolic compounds from sugarcane syrup do not influence ß-farnesene production at a large scale under the conditions tested.


Assuntos
Saccharomyces cerevisiae , Saccharum , Sesquiterpenos , Fermentação , Etanol , Fenóis
14.
J Physician Assist Educ ; 34(1): 41-45, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728123

RESUMO

INTRODUCTION: Service-learning (SL) is a pedagogy that can be used in healthcare education to develop students who are better prepared to address the various social determinants of health and to provide compassionate care to the diverse populations they will serve. Yet, an assessment of the quality and scope of the SL activities used in physician assistant (PA) education is not available. The purpose of this scoping review is to review the literature and identify and summarize articles about SL courses in PA education. METHODS: We performed a scoping literature search of 4 databases (CINAHL, PubMed, Embase, and Scopus) to identify peer-reviewed journal articles about SL in PA education. Studies that did not include PA students, were not a service-learning activity (but instead an interprofessional activity, simulation, or volunteerism), or were not a full article were all excluded. RESULTS: Nine articles were included in this scoping review after independent evaluation by 2 investigators based on specific inclusion and exclusion criteria. The most common reason for exclusion was lack of distinct learning objectives specific to the service learning and/or a lack of a structured, guided critical reflection that helped realize and demonstrate the desired learning outcomes. DISCUSSION: Although service-learning is considered to be a high-impact teaching practice, it is still an underutilized tool in PA education. Training faculty in the implementation of SL to align the hands-on activity with specific course learning objectives and in the effective use of structured critical reflection can create a more impactful and authentic SL educational experience.


Assuntos
Assistentes Médicos , Humanos , Assistentes Médicos/educação , Aprendizagem , Estudantes , Competência Clínica , Docentes
15.
Antioxidants (Basel) ; 13(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38247472

RESUMO

Sugarcane straw (Saccharum officinarum) is a valuable coproduct renowned for its abundant polyphenolic content. However, extracting these polyphenols for natural ingredients faces challenges due to their inherent variability, influenced by biotic stress factors and plant characteristics. We explored the impact of five crucial factors on sugarcane straw polyphenolic diversity: (i) production area (Guariba, Valparaíso), (ii) borer insect (Diatraea saccharalis) infestation, (iii) plant age (first to seventh harvest), (iv) harvest season, and (v) plant variety. Response surface methodology (RSM) and artificial neural networks (ANN) were used to optimize polyphenol extraction conditions. A second-order polynomial model guided us to predict ideal sugarcane straw harvesting conditions for polyphenol-rich extracts. The analysis identified CU0618-variety straw, harvested in Guariba during the dry season (October 2020), at the seventh harvest stage, with 13.81% borer insect infection, as the prime source for high hydroxybenzoic acid (1010 µg/g), hydroxycinnamic acid (3119 µg/g), and flavone (573 µg/g) content and consequently high antioxidant capacity. The ANN model surpasses the RSM model, demonstrating superior predictive capabilities with higher coefficients of determination and reduced mean absolute deviations for each polyphenol class. This underscores the potential of artificial neural networks in forecasting and enhancing polyphenol extraction conditions, setting the stage for AI-driven advancements in crop management.

16.
Foods ; 12(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38137266

RESUMO

Nowadays, plant-based bioactive compounds (BCs) are a key focus of research, supporting sustainable food production and favored by consumers for their perceived safety and health advantages over synthetic options. Lavandula pedunculata (LP) is a Portuguese, native species relevant to the bioeconomy that can be useful as a source of natural BCs, mainly phenolic compounds. This study compared LP polyphenol-rich extracts from conventional maceration extraction (CE), microwave and ultrasound-assisted extraction (MAE and UAE). As a result, rosmarinic acid (58.68-48.27 mg/g DE) and salvianolic acid B (43.19-40.09 mg/g DE) were the most representative phenolic compounds in the LP extracts. The three methods exhibited high antioxidant activity, highlighting the ORAC (1306.0 to 1765.5 mg Trolox equivalents (TE)/g DE) results. In addition, the extracts obtained with MAE and CE showed outstanding growth inhibition for B. cereus, S. aureus, E. coli, S. enterica and P. aeruginosa (>50%, at 10 mg/mL). The MAE extract showed the lowest IC50 (0.98 mg DE/mL) for angiotensin-converting enzyme inhibition and the best results for α-glucosidase and tyrosinase inhibition (at 5 mg/mL, the inhibition was 87 and 73%, respectively). The LP polyphenol-rich extracts were also safe on caco-2 intestinal cells, and no mutagenicity was detected. The UAE had lower efficiency in obtaining LP polyphenol-rich extracts. MAE equaled CE's efficiency, saving time and energy. LP shows potential as a sustainable raw material, allowing diverse extraction methods to safely develop health-promoting food and nutraceutical ingredients.

17.
Biofactors ; 49(5): 1038-1060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37317790

RESUMO

Postbiotics are defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." They can be produced by fermentation, using culture media with glucose (carbon source), and lactic acid bacteria of the genus Lactobacillus, and/or yeast, mainly Saccharomyces cerevisiae as fermentative microorganisms. Postbiotics comprise different metabolites, and have important biological properties (antioxidant, anti-inflammatory, etc.), thus their cosmetic application should be considered. During this work, the postbiotics production was carried out by fermentation with sugarcane straw, as a source of carbon and phenolic compounds, and as a sustainable process to obtain bioactive extracts. For the production of postbiotics, a saccharification process was carried out with cellulase at 55°C for 24 h. Fermentation was performed sequentially after saccharification at 30°C, for 72 h, using S. cerevisiae. The cells-free extract was characterized regarding its composition, antioxidant activity, and skincare potential. Its use was safe at concentrations below ~20 mg mL-1 (extract's dry weight in deionized water) for keratinocytes and ~ 7.5 mg mL-1 for fibroblasts. It showed antioxidant activity, with ABTS IC50 of 1.88 mg mL-1 , and inhibited elastase and tyrosinase activities by 83.4% and 42.4%, respectively, at the maximum concentration tested (20 mg mL-1 ). In addition, it promoted the production of cytokeratin 14, and demonstrated anti-inflammatory activity at a concentration of 10 mg mL-1 . In the skin microbiota of human volunteers, the extract inhibited Cutibacterium acnes and the Malassezia genus. Shortly, postbiotics were successfully produced using sugarcane straw, and showed bioactive properties that potentiate their use in cosmetic/skincare products.


Assuntos
Saccharomyces cerevisiae , Saccharum , Humanos , Saccharomyces cerevisiae/metabolismo , Fermentação , Saccharum/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Anti-Inflamatórios/metabolismo , Carbono/metabolismo
18.
Colloids Surf B Biointerfaces ; 226: 113305, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37084526

RESUMO

The demand for sustainable products is increasing worldwide and cosmetic industry is not an exception. Besides exploring nature as source of new ingredients, their production must be sustainable and should use environmentally friendly processes. In this work, biogenic silica microparticles were synthesized from sugarcane ash, and their potential application as cosmetic and skincare ingredient was evaluated. For such application, several properties were validated, including cytotoxicity in skin keratinocytes, potential sensitization effect on skin peptides, stimulation of pro-collagen I alpha 1, wound healing capacity, as well as the ingredient stability along a storage period. Biogenic silica showed to be non-cytotoxic on skin keratinocytes, at concentrations up to 5 wt%, and non-skin sensitizer. A positive effect on the stimulation of pro-collagen I alpha 1 suggests a potential anti-ageing activity, while the migration of fibroblasts to a wounded area suggests a regenerative capacity. Under an accelerated stability study, biogenic silica showed an increase on the loss on drying, but no changes were observed on its functional properties, mainly oil absorption capacity, as well the microbiological quality, which was maintained. Overall, novel biogenic silica microparticles produced from a sustainable source are safe, stable over time and have potential to be used as a cosmetic and skincare ingredient.


Assuntos
Cosméticos , Testes de Toxicidade , Qualidade de Produtos para o Consumidor , Fenômenos Químicos , Colágeno
19.
Commun Biol ; 6(1): 872, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620393

RESUMO

Human WIPI ß-propellers function as PI3P effectors in autophagy, with WIPI4 and WIPI3 being able to link autophagy control by AMPK and TORC1 to the formation of autophagosomes. WIPI1, instead, assists WIPI2 in efficiently recruiting the ATG16L1 complex at the nascent autophagosome, which in turn promotes lipidation of LC3/GABARAP and autophagosome maturation. However, the specific role of WIPI1 and its regulation are unknown. Here, we discovered the ABL-ERK-MYC signalling axis controlling WIPI1. As a result of this signalling, MYC binds to the WIPI1 promoter and represses WIPI1 gene expression. When ABL-ERK-MYC signalling is counteracted, increased WIPI1 gene expression enhances the formation of autophagic membranes capable of migrating through tunnelling nanotubes to neighbouring cells with low autophagic activity. ABL-regulated WIPI1 function is relevant to lifespan control, as ABL deficiency in C. elegans increased gene expression of the WIPI1 orthologue ATG-18 and prolonged lifespan in a manner dependent on ATG-18. We propose that WIPI1 acts as an enhancer of autophagy that is physiologically relevant for regulating the level of autophagic activity over the lifespan.


Assuntos
Longevidade , Proteínas Proto-Oncogênicas c-abl , Animais , Humanos , Autofagossomos , Autofagia/genética , Caenorhabditis elegans/genética , Longevidade/genética , Macroautofagia , Proteínas Proto-Oncogênicas c-abl/genética
20.
Sci Total Environ ; 902: 165620, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543326

RESUMO

Coastal eutrophication and urban flooding are increasingly important components of global change. Although increased seawater renewal by barrier openings and channelizing are common mitigation measures in coastal lagoons worldwide, their effects on these ecosystems are not fully understood. Here, we evaluated the relationships between human interventions in the watershed, artificial connections to the sea, and the sediment burial rates in an urban coastal lagoon (Maricá lagoon, Southeastern Brazil). Sediment accretion along with nutrient and carbon burial rates were determined in two sediment cores representing the past ∼120 years (210Pb dating) and associated with anthropogenic changes as indicated by historical records and geoinformation analyses. Lagoon infilling and eutrophication, expressed by the average sediment accretion, TP, TN, and OC burial rates, respectively, increased ∼9-18, 13-15, 11-14 and 11-12-fold from the earliest (<1950) to the most recent (2000-2017) period. These multi-proxy records confirm mechanistic links between deforestation, urbanization, and untreated sewage discharges. In addition, our findings reveal artificial connections to the sea may contribute to lagoonal eutrophication and infilling, particularly when not integrated with sewage treatment and forest conservation or reforestation in the watershed. Therefore, increased seawater renewal by physical interventions commonly considered as mitigation measures may in contrast cause severe degradation in coastal lagoons, causing harmful consequences that should be not neglected when implementing management practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA