Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 584(7819): 87-92, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32699412

RESUMO

The initial colonization of the Americas remains a highly debated topic1, and the exact timing of the first arrivals is unknown. The earliest archaeological record of Mexico-which holds a key geographical position in the Americas-is poorly known and understudied. Historically, the region has remained on the periphery of research focused on the first American populations2. However, recent investigations provide reliable evidence of a human presence in the northwest region of Mexico3,4, the Chiapas Highlands5, Central Mexico6 and the Caribbean coast7-9 during the Late Pleistocene and Early Holocene epochs. Here we present results of recent excavations at Chiquihuite Cave-a high-altitude site in central-northern Mexico-that corroborate previous findings in the Americas10-17of cultural evidence that dates to the Last Glacial Maximum (26,500-19,000 years ago)18, and which push back dates for human dispersal to the region possibly as early as 33,000-31,000 years ago. The site yielded about 1,900 stone artefacts within a 3-m-deep stratified sequence, revealing a previously unknown lithic industry that underwent only minor changes over millennia. More than 50 radiocarbon and luminescence dates provide chronological control, and genetic, palaeoenvironmental and chemical data document the changing environments in which the occupants lived. Our results provide new evidence for the antiquity of humans in the Americas, illustrate the cultural diversity of the earliest dispersal groups (which predate those of the Clovis culture) and open new directions of research.


Assuntos
Migração Humana/história , Camada de Gelo , Altitude , Arqueologia , Teorema de Bayes , Cavernas , Diversidade Cultural , DNA Antigo/análise , História Antiga , Humanos , México
2.
New Phytol ; 243(5): 2008-2020, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38952269

RESUMO

The diversity of plant-pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal-pollinated nectar-producing angiosperms and their distribution world-wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar-producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal-pollinated angiosperms are nectar-producing, accounting for 74.4% of biotic-pollinated species. Global distribution patterns of nectar-producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar-producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar-producing plants. Our study provides a baseline for understanding plant-pollinator relationships, plant diversification, and the distribution of plant traits.


Assuntos
Magnoliopsida , Néctar de Plantas , Polinização , Néctar de Plantas/metabolismo , Polinização/fisiologia , Magnoliopsida/fisiologia , Animais , Altitude , Flores/fisiologia , Clima , Geografia
3.
J Exp Bot ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365061

RESUMO

Resupination refers to the developmental orientation changes of flowers through ≈180º, leaving them effectively upside-down. It is a widespread trait present in 14 angiosperm families, including the Orchidaceae, where it is a gravitropic phenomenon actively controlled by auxins. Here, we demonstrate that the passive gravitational pull on flower parts can have an additional influence on resupination. We studied a lady's slipper orchid in which some flowers naturally fail to resupinate. We conducted a manipulative experiment removing floral parts and showed that both the probability of complete resupination and the degree of flower vertical movement (from 0º - 180º) are related to the mass of floral organs. During flower development, the tip of the ovary slightly curves actively (14.75º) due to gravitropism. This promotes a lever arm effect so that the gravitational pull acting on flower mass creates a torque that bends the ovary, orienting the flower into a resupinate position that is accessible to pollinators. The role of the mass of floral organs in resupination provides new insights into flower development and its role in pollination mechanisms.

4.
Ann Bot ; 131(2): 275-286, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479901

RESUMO

BACKGROUND AND AIMS: Trap flowers are fascinating cases of adaptation, often linked to oviposition-site mimicry systems. Some trap flowers do not imprison pollinators for a pre-determined period, but rather force them to move through a specific path, manipulating their movements in a way that culminates in pollen transfer, often as they leave through a secondary opening. METHODS: We investigated the previously unknown pollination system of the lady's slipper orchid Phragmipedium vittatum and assessed the function of micro-morphological traits of its trap flowers. KEY RESULTS: Our observations revealed that P. vittatum is pollinated by females of two hoverfly species (Syrphidae). Eggs laid by flies on or near raised black spots on the flowers indicate that the orchid mimics aphids which serve as food for their aphidophagous larvae. Dark, elevated aphid-like spots appear to attract the attention of hoverflies to a slipping zone. This region has downward projecting papillate cells and mucilage secretion that promote slipperiness, causing potential pollinators to fall into the labellum. They then follow a specific upward route towards inner aphid-like spots by holding onto upward oriented hairs that aid their grip. As hoverflies are funnelled by the lateral constriction of the labellum, they pass the stigma, depositing pollen they may be carrying. Later, they squeeze under one of the articulated anthers which places pollen smears onto their upper thorax. Then, they depart through one of the narrow lateral holes by holding onto hairs projecting from the petals. CONCLUSIONS: This study confirms the system of aphid mimicry in Phragmipedium and highlights the sophisticated micro-morphological traits used by trap flowers in pollinator attraction, trapping, guidance and release, thus promoting precise pollen transfer.


Assuntos
Afídeos , Animais , Feminino , Aclimatação , Brasil , Flores , Pólen , Polinização
5.
Naturwissenschaften ; 108(5): 39, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477965

RESUMO

Florivores and rainfall generally have negative impacts on plant fecundity. However, in some cases, they can mediate fruit set. Some plants face severe pollen-limited fecundity and any additional fruit set, even if from self-pollination, can be advantageous. This is the case in some tropical deceptive orchids, such as the threatened Cyrtopodium hatschbachii. Here we test the hypothesis that florivory of the anther cap would facilitate rain-assisted autogamy in this species. In the field, we followed flowers in which the anther cap was removed by the orthopteran Stenopola sp. and found cases where pollinia self-deposited after rainfall and in one case this resulted in swelling of the column typical of fruit development. This event comprised 33% of all fruit set in the population in 2019. We then experimentally varied anther cap removal and rainfall in a factorial design and found increased fruit set in the group with cap removal (simulated florivory) followed by rain. The water absorption by pollinia makes them heavier, causing the stipe to bend. The droplet of water on the stigma then shrinks and pulls the pollinia back onto the stigma, causing self-pollination. Seeds from self-pollination have considerable viability and may allow population persistence, given that bee-mediated cross-pollination is uncertain and even absent in some years. Our study provides a unique example of how two unrelated factors (i.e., florivory and rain) that are detrimental alone may together promote fruit set.


Assuntos
Orchidaceae , Polinização , Animais , Abelhas , Flores , Pólen , Chuva
6.
Environ Sci Technol ; 55(17): 12043-12053, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34423633

RESUMO

Crop pollination is one of Nature's Contributions to People (NCP) that reconciles biodiversity conservation and agricultural production. NCP benefits vary across space, including among distinct political-administrative levels within nations. Moreover, initiatives to restore ecosystems may enhance NCP provision, such as crop pollination delivered by native pollinators. We mapped crop pollination demand (PD), diversity of pollinator-dependent crops, and vegetation deficit (VD) (vis-a-vis Brazilian legal requirements) across all 5570 municipalities in Brazil. Pollinator-dependent crops represented ∼55% of the annual monetary value of agricultural production and ∼15% of the annual crop production. Municipalities with greater crop PD (i.e., higher degree of pollinator dependence of crop production) also had greater VD, associated with large properties and monocultures. In contrast, municipalities with a greater diversity of pollinator-dependent crops and predominantly small properties presented a smaller VD. Our results support that ecological restoration prompted by legal requirements offers great potential to promote crop productivity in larger properties. Moreover, conservation of vegetation remnants could support food security in small properties. We provided the first steps to identify spatial patterns linking biodiversity conservation and pollination service. Using Brazilian legal requirements as an example, we show that land-use management policies may be successfully used to ensure agricultural sustainability and crop production.


Assuntos
Ecossistema , Polinização , Agricultura , Abelhas , Biodiversidade , Brasil , Produtos Agrícolas , Humanos
7.
Proc Biol Sci ; 287(1922): 20192873, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32156208

RESUMO

Interactions between species are influenced by different ecological mechanisms, such as morphological matching, phenological overlap and species abundances. How these mechanisms explain interaction frequencies across environmental gradients remains poorly understood. Consequently, we also know little about the mechanisms that drive the geographical patterns in network structure, such as complementary specialization and modularity. Here, we use data on morphologies, phenologies and abundances to explain interaction frequencies between hummingbirds and plants at a large geographical scale. For 24 quantitative networks sampled throughout the Americas, we found that the tendency of species to interact with morphologically matching partners contributed to specialized and modular network structures. Morphological matching best explained interaction frequencies in networks found closer to the equator and in areas with low-temperature seasonality. When comparing the three ecological mechanisms within networks, we found that both morphological matching and phenological overlap generally outperformed abundances in the explanation of interaction frequencies. Together, these findings provide insights into the ecological mechanisms that underlie geographical patterns in resource specialization. Notably, our results highlight morphological constraints on interactions as a potential explanation for increasing resource specialization towards lower latitudes.


Assuntos
Aves , Ecossistema , Polinização , Animais , Biodiversidade , Geografia , Plantas
8.
Ann Bot ; 125(6): 925-935, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31957784

RESUMO

BACKGROUND AND AIMS: Pollen tube growth rate (PTGR) is an important single-cell performance trait that may evolve rapidly under haploid selection. Angiosperms have experienced repeated cycles of polyploidy (whole genome duplication), and polyploidy has cell-level phenotypic consequences arising from increased bulk DNA amount and numbers of genes and their interactions. We sought to understand potential effects of polyploidy on several underlying determinants of PTGR - pollen tube dimensions and construction rates - by comparing diploid-polyploid near-relatives in Betula (Betulaceae) and Handroanthus (Bignoniaceae). METHODS: We performed intraspecific, outcrossed hand-pollinations on pairs of flowers. In one flower, PTGR was calculated from the longest pollen tube per time of tube elongation. In the other, styles were embedded in glycol methacrylate, serial-sectioned in transverse orientation, stained and viewed at 1000× to measure tube wall thicknesses (W) and circumferences (C). Volumetric growth rate (VGR) and wall production rate (WPR) were then calculated for each tube by multiplying cross-sectional tube area (πr2) or wall area (W × C), by the mean PTGR of each maternal replicate respectively. KEY RESULTS: In Betula and Handroanthus, the hexaploid species had significantly wider pollen tubes (13 and 25 %, respectively) and significantly higher WPRs (22 and 18 %, respectively) than their diploid congeners. PTGRs were not significantly different in both pairs, even though wider polyploid tubes were predicted to decrease PTGRs by 16 and 20 %, respectively. CONCLUSIONS: The larger tube sizes of polyploids imposed a substantial materials cost on PTGR, but polyploids also exhibited higher VGRs and WPRs, probably reflecting the evolution of increased metabolic activity. Recurrent cycles of polyploidy followed by genome reorganization may have been important for the evolution of fast PTGRs in angiosperms, involving a complex interplay between correlated changes in ploidy level, genome size, cell size and pollen tube energetics.


Assuntos
Magnoliopsida , Tubo Polínico , Estudos Transversais , Diploide , Humanos , Poliploidia
9.
An Acad Bras Cienc ; 90(2 suppl 1): 2011-2023, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30133569

RESUMO

We present two pollen diagrams from the semi-arid Caatinga of the Catimbau National Park, in Pernambuco and from a Mauritia palm forest in the Caatinga/Cerrado ecotone of southern Piauí, NE Brazil, spanning the last 10,000 cal. yrs BP and the last 1,750 cal yrs BP, respectively. These two records contain a signature of the local vegetation and permit the correlation of the pollen signal with regional climatic changes. The Catimbau record shows Zizyphus sp., a typical Caatinga taxon, in all three pollen zones indicating regional Caatinga vegetation and the predominance of local arboreal taxa adapted to high humidity from 10,000 to ca. 6,000 cal. yrs BP with a gradual tendency towards drier conditions revealed by a deposition hiatus between 6,000 to ca. 2,000 cal. yrs BP. This abrupt loss of sediments in both localities is interpreted as a consequence of the establishment of modern semi-arid climates. The subsequent return of humidity is signaled by increased sedimentation rates and 14C date inversions in agreement with high precipitation, revealed by σ18O ratios in speleothems from NE Brazil. Modern sediments deposited in the last 500 years reflect local conditions with the maintenance of humidity by geological faulting and surfacing water tables.


Assuntos
Sedimentos Geológicos , Paleontologia , Pólen , Brasil , Clima Desértico , Árvores
10.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26842573

RESUMO

Ecological communities that experience stable climate conditions have been speculated to preserve more specialized interspecific associations and have higher proportions of smaller ranged species (SRS). Thus, areas with disproportionally large numbers of SRS are expected to coincide geographically with a high degree of community-level ecological specialization, but this suggestion remains poorly supported with empirical evidence. Here, we analysed data for hummingbird resource specialization, range size, contemporary climate, and Late Quaternary climate stability for 46 hummingbird-plant mutualistic networks distributed across the Americas, representing 130 hummingbird species (ca 40% of all hummingbird species). We demonstrate a positive relationship between the proportion of SRS of hummingbirds and community-level specialization, i.e. the division of the floral niche among coexisting hummingbird species. This relationship remained strong even when accounting for climate, furthermore, the effect of SRS on specialization was far stronger than the effect of specialization on SRS, suggesting that climate largely influences specialization through species' range-size dynamics. Irrespective of the exact mechanism involved, our results indicate that communities consisting of higher proportions of SRS may be vulnerable to disturbance not only because of their small geographical ranges, but also because of their high degree of specialization.


Assuntos
Distribuição Animal , Aves/fisiologia , Ecossistema , Magnoliopsida/fisiologia , Simbiose , Animais , América Central , Clima , América do Norte , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA