Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 30(R2): R206-R224, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329396

RESUMO

Hereditary colorectal cancer (CRC) syndromes attributable to high penetrance mutations represent 9-26% of young-onset CRC cases. The clinical significance of many of these mutations is understood well enough to be used in diagnostics and as an aid in patient care. However, despite the advances made in the field, a significant proportion of familial and early-onset cases remains molecularly uncharacterized and extensive work is still needed to fully understand the genetic nature of CRC susceptibility. With the emergence of next-generation sequencing and associated methods, several predisposition loci have been unraveled, but validation is incomplete. Individuals with cancer-predisposing mutations are currently enrolled in life-long surveillance, but with the development of new treatments, such as cancer vaccinations, this might change in the not so distant future for at least some individuals. For individuals without a known cause for their disease susceptibility, prevention and therapy options are less precise. Herein, we review the progress achieved in the last three decades with a focus on how CRC predisposition genes were discovered. Furthermore, we discuss the clinical implications of these discoveries and anticipate what to expect in the next decade.


Assuntos
Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Transformação Celular Neoplásica/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Predisposição Genética para Doença , Alelos , Animais , Progressão da Doença , Estudos de Associação Genética , Ligação Genética , Genômica/métodos , Humanos , Mutação , Fenótipo , Síndrome , Sequenciamento do Exoma
2.
Int J Cancer ; 148(12): 2997-3007, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33521965

RESUMO

Ulcerative colitis increases colorectal cancer risk by mechanisms that remain incompletely understood. We approached this question by determining the genetic and epigenetic profiles of colitis-associated colorectal carcinomas (CA-CRC). The findings were compared to Lynch syndrome (LS), a different form of cancer predisposition that shares the importance of immunological factors in tumorigenesis. CA-CRCs (n = 27) were investigated for microsatellite instability, CpG island methylator phenotype and somatic mutations of 999 cancer-relevant genes ("Pan-cancer" panel). A subpanel of "Pan-cancer" design (578 genes) was used for LS colorectal tumors (n = 28). Mutational loads and signatures stratified CA-CRCs into three subgroups: hypermutated microsatellite-unstable (Group 1, n = 1), hypermutated microsatellite-stable (Group 2, n = 9) and nonhypermutated microsatellite-stable (Group 3, n = 17). The Group 1 tumor was the only one with MLH1 promoter hypermethylation and exhibited the mismatch repair deficiency-associated Signatures 21 and 15. Signatures 30 and 32 characterized Group 2, whereas no prominent single signature existed in Group 3. TP53, the most common mutational target in CA-CRC (16/27, 59%), was similarly affected in Groups 2 and 3, but DNA repair genes and Wnt signaling genes were mutated significantly more often in Group 2. In LS tumors, the degree of hypermutability exceeded that of the hypermutated CA-CRC Groups 1 and 2, and somatic mutational profiles and signatures were different. In conclusion, Groups 1 (4%) and 3 (63%) comply with published studies, whereas Group 2 (33%) is novel. The existence of molecularly distinct subgroups within CA-CRC may guide clinical management, such as therapy options.


Assuntos
Colite Ulcerativa/genética , Neoplasias Associadas a Colite/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteína 1 Homóloga a MutL/genética , Mutação , Proteína Supressora de Tumor p53/genética , Adulto , Colite Ulcerativa/complicações , Ilhas de CpG , Metilação de DNA , Feminino , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Análise de Sequência de DNA
3.
Genet Med ; 21(8): 1868-1873, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30573798

RESUMO

PURPOSE: Some 10% of familial adenomatous polyposis (FAP) and 80% of attenuated polyposis (AFAP) cases remain molecularly unexplained. We scrutinized such cases by exome-wide and targeted methods to search for novel susceptibility genes. METHODS: Exome sequencing was conducted on 40 unexplained (mainly sporadic) cases with FAP or AFAP from Finland. The DNA mismatch repair (MMR) gene MLH3 (MutL Homolog 3) was pinpointed and prompted a subsequent screen of ~1000 Swedish patients referred to clinical panel sequencing for colon tumor susceptibility. RESULTS: Three homozygous carriers of a truncating variant in MLH3, c.3563C>G, p.Ser1188Ter, were identified among the index cases from the Finnish series. An additional biallelic carrier of the same variant was present in the Swedish series. All four patients shared a 0.8-Mb core haplotype around MLH3, suggesting a founder variant. Colorectal polyps from variant carriers showed no instability at mono-, di-, tri-, or tetranucleotide repeats, in agreement with previous findings of a minor role of MLH3 in MMR. Multiple loci were affected by loss of heterozygosity, suggesting chromosomal instability. CONCLUSION: Our results show that a biallelic nonsense variant of MLH3 underlies a novel syndrome with susceptibility to classical or attenuated adenomatous polyposis and possibly extracolonic tumors, including breast cancer.


Assuntos
Polipose Adenomatosa do Colo/genética , Predisposição Genética para Doença , Proteínas MutL/genética , Polipose Adenomatosa do Colo/epidemiologia , Polipose Adenomatosa do Colo/patologia , Idoso , Alelos , Códon sem Sentido/genética , Exoma/genética , Feminino , Finlândia/epidemiologia , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Pessoa de Meia-Idade , Suécia/epidemiologia , Sequenciamento do Exoma
4.
Front Oncol ; 14: 1378392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725616

RESUMO

Background: Lynch syndrome (LS) is an autosomal dominant multi-organ cancer syndrome with a high lifetime risk of cancer. The number of cumulative colorectal adenomas in LS does not generally exceed ten, and removal of adenomas via routine screening minimizes the cancer burden. However, abnormal phenotypes may mislead initial diagnosis and subsequently cause suboptimal treatment. Aim: Currently, there is no standard guide for the care of multiple colorectal adenomas in LS individuals. We aimed to shed insight into the molecular features and reasons for multiplicity of adenomas in LS patients. Methods: We applied whole exome sequencing on nine adenomas (ten samples) and three assumed primary carcinomas (five samples) of an LS patient developing the tumors during a 21-year follow-up period. We compared the findings to the tumor profiles of two additional LS cases ascertained through colorectal tumor multiplicity, as well as to ten adenomas and 15 carcinomas from 23 unrelated LS patients with no elevated adenoma burden from the same population. As LS associated cancers can arise via several molecular pathways, we also profiled the tumors for CpG Island Methylator Phenotype (CIMP), and LINE-1 methylation. Results: All tumors were microsatellite unstable (MSI), and MSI was present in several samples derived from normal mucosa as well. Interestingly, frequent frameshift variants in RNF43 were shared among substantial number of the tumors of our primary case and the tumors of LS cases with multiple tumors but almost absent in our control LS cases. The RNF43 variants were completely absent in the normal tissue, indicating tumor-associated mutational hotspots. The RNF43 status correlated with the mutational signature SBS96. Contrary to LS tumors from the reference set with no elevated colorectal tumor burden, the somatic variants occurred significantly more frequently at C>T in the CpG context, irrespective of CIMP or LINE-1 status, potentially indicating other, yet unknown methylation-related mechanisms. There were no signs of somatic mosaicism affecting the MMR genes. Somatic variants in APC and CTNNB1 were unique to each tumor. Conclusion: Frequent somatic RNF43 hot spot variants combined with SBS96 signature and increased tendency to DNA methylation may contribute to tumor multiplicity in LS.

5.
Cancers (Basel) ; 14(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35267656

RESUMO

International guidelines recommend universal screening of endometrial carcinoma (EC) patients for Lynch syndrome (LS). This screening is generally based on mismatch repair (MMR) protein immunohistochemistry followed by MLH1 methylation analysis of MLH1-negative cases to exclude the likely sporadic cases from germline testing. As LS-associated EC is uncommon in the elderly, age-selective methylation testing could improve cost-efficiency. We performed MMR immunohistochemistry on 821 unselected ECs (clinic-based cohort) followed by a MLH1 promoter methylation test of all MLH1/PMS2-negative tumors. Non-methylated MLH1-deficient cases underwent NGS and MLPA-based germline analyses to identify MLH1 mutation carriers. A reduction in the test burden and corresponding false negative rates for LS screening were investigated for various age cut-offs. In addition, the age distribution of 132 MLH1 mutation carriers diagnosed with EC (registry-based cohort) was examined. A germline MLH1 mutation was found in 2/14 patients with non-methylated MLH1-deficient EC. When compared to a universal methylation analysis, selective testing with a cut-off age of 65 years, would have reduced the testing effort by 70.7% with a false negative rate for LS detection of 0% and 3% in the clinic and registry-based cohorts, respectively. The use of age-selective methylation analysis is a feasible way of reducing the costs and laboratory burden in LS screening for EC patients.

6.
Front Oncol ; 12: 870863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387175

RESUMO

Recently, biallelic germline variants of the DNA glycosylase genes MUTYH and NTHL1 were linked to polyposis susceptibility. Significant fractions remain without a molecular explanation, warranting searches for underlying causes. We used exome sequencing to investigate clinically well-defined adenomatous polyposis cases and families from Finland (N=34), Chile (N=21), and Argentina (N=12), all with known susceptibility genes excluded. Nine index cases (13%) revealed germline variants with proven or possible pathogenicity in the DNA glycosylase genes, involving NEIL1 (mono- or biallelic) in 3 cases, MUTYH (monoallelic) in 3 cases, NTHL1 (biallelic) in 1 case, and OGG1 (monoallelic) in 2 cases. NTHL1 was affected with the well-established, pathogenic c.268C>T, p.(Gln90Ter) variant. A recurrent heterozygous NEIL1 c.506G>A, p.(Gly169Asp) variant was observed in two families. In a Finnish family, the variant occurred in trans with a truncating NEIL1 variant (c.821delT). In an Argentine family, the variant co-occurred with a genomic deletion of exons 2 - 11 of PMS2. Mutational signatures in tumor tissues complied with biological functions reported for NEIL1. Our results suggest that germline variants in DNA glycosylase genes may occur in a non-negligible proportion of unexplained colon polyposis cases and may predispose to tumor development.

7.
Expert Rev Gastroenterol Hepatol ; 14(8): 707-720, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32755332

RESUMO

INTRODUCTION: Up to one third of colorectal cancers show familial clustering and 5% are hereditary single-gene disorders. Hereditary non-polyposis colorectal cancer comprises DNA mismatch repair-deficient and -proficient subsets, represented by Lynch syndrome (LS) and familial colorectal cancer type X (FCCTX), respectively. Accurate knowledge of molecular etiology and genotype-phenotype correlations are critical for tailored cancer prevention and treatment. AREAS COVERED: The authors highlight advances in the molecular dissection of hereditary non-polyposis colorectal cancer, based on recent literature retrieved from PubMed. Future possibilities for novel gene discoveries are discussed. EXPERT COMMENTARY: LS is molecularly well established, but new information is accumulating of the associated clinical and tumor phenotypes. FCCTX remains poorly defined, but several promising candidate genes have been discovered and share some preferential biological pathways. Multi-level characterization of specimens from large patient cohorts representing multiple populations, combined with proper bioinformatic and functional analyses, will be necessary to resolve the outstanding questions.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Predisposição Genética para Doença/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , DNA Helicases/genética , DNA Polimerase II/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Genótipo , Humanos , Proteína Homóloga a MRE11/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Enzimas Multifuncionais/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Mutação , N-Acetilgalactosaminiltransferases/genética , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Ribossômicas/genética , Semaforinas/genética , Complexo Shelterina , Fatores Associados à Proteína de Ligação a TATA/genética , Proteínas de Ligação a Telômeros/genética , Helicase da Síndrome de Werner/genética
8.
Cancers (Basel) ; 12(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660107

RESUMO

Some 10-50% of Lynch-suspected cases with abnormal immunohistochemical (IHC) staining remain without any identifiable germline mutation of DNA mismatch repair (MMR) genes. MMR proteins form heterodimeric complexes, giving rise to distinct IHC patterns when mutant. Potential reasons for not finding a germline mutation include involvement of an MMR gene not predicted by the IHC pattern, epigenetic mechanism of predisposition, primary mutation in another DNA repair or replication-associated gene, and double somatic MMR gene mutations. We addressed these possibilities by germline and tumor studies in 60 Lynch-suspected cases ascertained through diagnostics (n = 55) or research (n = 5). All cases had abnormal MMR protein staining in tumors but no point mutation or large rearrangement of the suspected MMR genes in the germline. In diagnostic practice, MSH2/MSH6 (MutS Homolog 2/MutS Homolog 6) deficiency prompts MSH2 mutation screening; in our study, 3/11 index individuals (27%) with this IHC pattern revealed pathogenic germline mutations in MSH6. Individuals with isolated absence of MSH6 are routinely screened for MSH6 mutations alone; we found a predisposing mutation in MSH2 in 1/7 such cases (14%). Somatic deletion of the MSH2-MSH6 region, joint loss of MSH6 and MSH3 (MutS Homolog 3) proteins, and hindered MSH2/MSH6 dimerization offered explanations to misleading IHC patterns. Constitutional epimutation hypothesis was pursued in the MSH2 and/or MSH6-deficient cases plus 38 cases with MLH1 (MutL Homolog 1)-deficient tumors; a primary MLH1 epimutation was identified in one case with an MLH1-deficient tumor. We conclude that both MSH2 and MSH6 should be screened in MSH2/6- and MSH6-deficient cases. In MLH1-deficient cases, constitutional epimutations of MLH1 warrant consideration.

9.
Oncotarget ; 11(14): 1244-1256, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32292574

RESUMO

Inherited DNA mismatch repair (MMR) defects cause predisposition to colorectal, endometrial, ovarian, and other cancers occurring in Lynch syndrome (LS). It is unsettled whether breast carcinoma belongs to the LS tumor spectrum. We approached this question through somatic mutational analysis of breast carcinomas from LS families, using established LS-spectrum tumors for comparison. Somatic mutational profiles of 578 cancer-relevant genes were determined for LS-breast cancer (LS-BC, n = 20), non-carrier breast cancer (NC-BC, n = 10), LS-ovarian cancer (LS-OC, n = 16), and LS-colorectal cancer (LS-CRC, n = 18) from the National LS Registry of Finland. Microsatellite and MMR protein analysis stratified LS-BCs into MMR-deficient (dMMR, n = 11) and MMR-proficient (pMMR, n = 9) subgroups. All NC-BCs were pMMR and all LS-OCs and LS-CRCs dMMR. All but one dMMR LS-BCs were hypermutated (> 10 non-synonymous mutations/Mb; average 174/Mb per tumor) and the frequency of MMR-deficiency-associated signatures 6, 20, and 26 was comparable to that in LS-OC and LS-CRC. LS-BCs that were pMMR resembled NC-BCs with respect to somatic mutational loads (4/9, 44%, hypermutated with average mutation count 33/Mb vs. 3/10, 30%, hypermutated with average 88 mutations/Mb), whereas mutational signatures shared features of dMMR LS-BC, LS-OC, and LS-CRC. Epigenetic regulatory genes were significantly enriched as mutational targets in LS-BC, LS-OC, and LS-CRC. Many top mutant genes of our LS-BCs have previously been identified as drivers of unselected breast carcinomas. In conclusion, somatic mutational signatures suggest that conventional MMR status of tumor tissues is likely to underestimate the significance of the predisposing MMR defects as contributors to breast tumorigenesis in LS.

10.
Thyroid ; 30(3): 380-388, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32024448

RESUMO

Background: Familial adenomatous polyposis (FAP) is a condition typically caused by pathogenic germline mutations in the APC gene. In addition to colon polyps, individuals with FAP have a substantially increased risk of developing papillary thyroid cancer (PTC). Little is known about the events underlying this association, and the prevalence of somatic "second-hit" mutations in APC is controversial. Methods: Whole-genome sequencing was performed on paired thyroid tumor and normal DNA from 12 FAP patients who developed PTC. Somatic mutation profiles were compared with clinical characteristics and previously sequenced sporadic PTC cases. Germline variant profiling was performed to assess the prevalence of variants in genes previously shown to have a role in PTC predisposition. Results: All 12 patients harbored germline mutations in APC, consistent with FAP. Seven patients also had somatic mutations in APC, and seven patients harbored somatic mutations in KMT2D, which encodes a lysine methyl transferase. Mutation of these genes is extremely rare in sporadic PTCs. Notably, only two of the tumors harbored the somatic BRAF p.V600E mutation, which is the most common driver mutation found in sporadic PTCs. Six tumors displayed a cribriform-morular variant of PTC (PTC-CMV) histology, and all six had somatic mutations in APC. Additionally, nine FAP-PTC patients had rare germline variants in genes that were previously associated with thyroid carcinoma. Conclusions: Our data indicate that FAP-associated PTCs typically have distinct mutations compared with sporadic PTCs. Roughly half of the thyroid cancers that arise in FAP patients have somatic "second-hits" in APC, which is associated with PTC-CMV histology. Somatic BRAF p.V600E variants also occur in some FAP patients, a novel finding. We speculate that in carriers of heterozygous pathogenic mutations of tumor suppressor genes such as APC, a cooperating second-hit somatic variant may occur in a different gene such as KTM2D or BRAF, leading to differences in phenotypes. The role of germline variance in genes other than APC (9 of the 12 patients in this series) needs further research.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Oncotarget ; 8(64): 108020-108030, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29296220

RESUMO

Genomic instability and epigenetic aberrations are important classifiers of human tumors, yet, their interrelations are poorly understood. We used Lynch syndrome (LS) to address such relationships. Forty-five tumors (11 colorectal adenomas, 18 colorectal carcinomas, and 16 ovarian carcinomas) were profiled for CpG Island Methylator Phenotype (CIMP) and somatic mutations. All tumors showed high-degree microsatellite instability. Panel sequencing of 578 cancer-relevant genes revealed the average number of 1433, 1124, and 657 non-synonymous somatic mutations per colorectal adenoma, colorectal carcinoma, and ovarian carcinoma, respectively. Genes harboring mutations with allele frequency 25 % or higher in at least 31 % of tumors were regarded to be possible drivers. Among 72 and 10 such genes identified in colorectal and ovarian tumors, respectively, the most frequently mutated genes BRD4 and MLL2 (62 % of colorectal tumors) and ARID1A (50 % of ovarian carcinomas) are involved in epigenetic regulation. The total number of somatic mutations or mutant genes per tumor were significantly associated with CIMP. Our results suggest that even in an inherited disease, tumor type-specific epigenetic changes are significant and may result from regulatory changes (CIMP) or structural events (mutations of epigenetic regulatory genes). The findings are clinically relevant since many of the affected pathways can be therapeutically targeted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA