Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 147(3): 254-266, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649394

RESUMO

Cardiac rehabilitation (CR) is a guideline-recommended, multidisciplinary program of exercise training, risk factor management, and psychosocial counseling for people with cardiovascular disease (CVD) that is beneficial but underused and with substantial disparities in referral, access, and participation. The emergence of new virtual and remote delivery models has the potential to improve access to and participation in CR and ultimately improve outcomes for people with CVD. Although data suggest that new delivery models for CR have safety and efficacy similar to traditional in-person CR, questions remain regarding which participants are most likely to benefit from these models, how and where such programs should be delivered, and their effect on outcomes in diverse populations. In this review, we describe important gaps in evidence, identify relevant research questions, and propose strategies for addressing them. We highlight 4 research priorities: (1) including diverse populations in all CR research; (2) leveraging implementation methodologies to enhance equitable delivery of CR; (3) clarifying which populations are most likely to benefit from virtual and remote CR; and (4) comparing traditional in-person CR with virtual and remote CR in diverse populations using multicenter studies of important clinical, psychosocial, and cost-effectiveness outcomes that are relevant to patients, caregivers, providers, health systems, and payors. By framing these important questions, we hope to advance toward a goal of delivering high-quality CR to as many people as possible to improve outcomes in those with CVD.


Assuntos
Reabilitação Cardíaca , Doenças Cardiovasculares , Humanos , Reabilitação Cardíaca/métodos , Lacunas de Evidências , Doenças Cardiovasculares/terapia , Cuidadores
2.
Circ Res ; 130(4): 552-565, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175838

RESUMO

Cardiovascular disease is a leading cause of morbidity and mortality in males and females in the United States and globally. Cardiac rehabilitation (CR) is recommended by the American Heart Association/American College of Cardiology for secondary prevention for patients with cardiovascular disease. CR participation is associated with improved cardiovascular disease risk factor management, quality of life, and exercise capacity as well as reductions in hospital admissions and mortality. Despite these advantageous clinical outcomes, significant sex disparities exist in outpatient phase II CR programming. This article reviews sex differences that are present in the spectrum of care provided by outpatient phase II CR programming (ie, from referral to clinical management). We first review CR participation by detailing the sex disparities in the rates of CR referral, enrollment, and completion. In doing so, we discuss patient, health care provider, and social/environmental level barriers to CR participation with a particular emphasis on those barriers that majorly impact females. We also evaluate sex differences in the core components incorporated into CR programming (eg, patient assessment, exercise training, hypertension management). Next, we review strategies to mitigate these sex differences in CR participation with a focus on automatic CR referral, female-only CR programming, and hybrid CR. Finally, we outline knowledge gaps and areas of future research to minimize and prevent sex differences in CR programming.


Assuntos
Reabilitação Cardíaca/métodos , Doenças Cardiovasculares/terapia , Caracteres Sexuais , Reabilitação Cardíaca/tendências , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/fisiopatologia , Dieta Saudável/métodos , Exercício Físico , Feminino , Humanos , Masculino , Abandono do Hábito de Fumar/métodos , Resultado do Tratamento , Redução de Peso/fisiologia
3.
JAMA ; 329(10): 801-809, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36871285

RESUMO

Importance: Reduced heart rate during exercise is common and associated with impaired aerobic capacity in heart failure with preserved ejection fraction (HFpEF), but it remains unknown if restoring exertional heart rate through atrial pacing would be beneficial. Objective: To determine if implanting and programming a pacemaker for rate-adaptive atrial pacing would improve exercise performance in patients with HFpEF and chronotropic incompetence. Design, Setting, and Participants: Single-center, double-blind, randomized, crossover trial testing the effects of rate-adaptive atrial pacing in patients with symptomatic HFpEF and chronotropic incompetence at a tertiary referral center (Mayo Clinic) in Rochester, Minnesota. Patients were recruited between 2014 and 2022 with 16-week follow-up (last date of follow-up, May 9, 2022). Cardiac output during exercise was measured by the acetylene rebreathe technique. Interventions: A total of 32 patients were recruited; of these, 29 underwent pacemaker implantation and were randomized to atrial rate responsive pacing or no pacing first for 4 weeks, followed by a 4-week washout period and then crossover for an additional 4 weeks. Main Outcomes and Measures: The primary end point was oxygen consumption (V̇o2) at anaerobic threshold (V̇o2,AT); secondary end points were peak V̇o2, ventilatory efficiency (V̇e/V̇co2 slope), patient-reported health status by the Kansas City Cardiomyopathy Questionnaire Overall Summary Score (KCCQ-OSS), and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. Results: Of the 29 patients randomized, the mean age was 66 years (SD, 9.7) and 13 (45%) were women. In the absence of pacing, peak V̇o2 and V̇o2 at anaerobic threshold (V̇o2,AT) were both correlated with peak exercise heart rate (r = 0.46-0.51, P < .02 for both). Pacing increased heart rate during low-level and peak exercise (16/min [95% CI, 10 to 23], P < .001; 14/min [95% CI, 7 to 21], P < .001), but there was no significant change in V̇o2,AT (pacing off, 10.4 [SD, 2.9] mL/kg/min; pacing on, 10.7 [SD, 2.6] mL/kg/min; absolute difference, 0.3 [95% CI, -0.5 to 1.0] mL/kg/min; P = .46), peak V̇o2, minute ventilation (V̇e)/carbon dioxide production (V̇co2) slope, KCCQ-OSS, or NT-proBNP level. Despite the increase in heart rate, atrial pacing had no significant effect on cardiac output with exercise, owing to a decrease in stroke volume (-24 mL [95% CI, -43 to -5 mL]; P = .02). Adverse events judged to be related to the pacemaker device were observed in 6 of 29 participants (21%). Conclusions and Relevance: In patients with HFpEF and chronotropic incompetence, implantation of a pacemaker to enhance exercise heart rate did not result in an improvement in exercise capacity and was associated with increased adverse events. Trial Registration: ClinicalTrials.gov Identifier: NCT02145351.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Humanos , Feminino , Idoso , Masculino , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/fisiopatologia , Volume Sistólico , Método Duplo-Cego , Teste de Esforço
4.
Clin Sci (Lond) ; 136(22): 1653-1656, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36398719

RESUMO

Over 50 years ago, John Wahren and Lennart Jorfeldt published a manuscript in Clinical Science where they detailed a series of studies of leg blood flow during exercise. They used a novel approach to indicator dye dilution: continuous arterial infusions of dye using venous samples. This technique allowed them to describe for the first time the fundamental relationships between large muscle group exercise, muscle blood flow, and pulmonary and muscle oxygen uptake. They also defined mechanical efficiency, a key measurement of muscle function. This paper formed the basis for research into muscle blood flow and exercise in health and disease and continued to be cited by modern research. In this commentary, we describe the innovations they made, the key observations that came out of their results, and the importance of this manuscript to current research.


Assuntos
Perna (Membro) , Consumo de Oxigênio , Humanos , Consumo de Oxigênio/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Perna (Membro)/irrigação sanguínea , Hemodinâmica , Músculos/metabolismo
5.
J Card Fail ; 27(12): 1313-1320, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33974969

RESUMO

BACKGROUND: A warmup period of priming exercise has been shown to improve peripheral oxygen transport in older adults. We sought to determine the acute effects of priming exercise on central hemodynamics at rest and during a repeat exercise in heart failure with preserved ejection fraction (HFpEF). METHODS AND RESULTS: This is a post hoc analysis from 3 studies. Patients with HFpEF (n = 42) underwent cardiac catheterization with simultaneous expired gas analysis at rest and during exercise (20 W for 5 minutes, priming exercise). Measurements were then repeated at rest and during a second bout of exercise at a 20-W workload (second exercise). During the priming exercise, patients with HFpEF displayed dramatic increases in biventricular filling pressures and exercise-induced pulmonary hypertension. After the priming exercise at rest, biventricular filling pressures and pulmonary artery (PA) pressures were lower and lung tidal volume was increased. During the second bout of exercise, biventricular filling (PA wedge pressure, 29 ± 8 mm Hg at second exercise vs 32 ± 7 mm Hg at first exercise, P = .0003) and PA pressures were lower, and PA compliance increased. CONCLUSIONS: This study shows that short duration, submaximal priming exercise attenuates the pathologic increases in filling pressures, improving pulmonary vascular hemodynamics at rest and during repeat exercise in patients with HFpEF.


Assuntos
Insuficiência Cardíaca , Idoso , Teste de Esforço , Tolerância ao Exercício , Insuficiência Cardíaca/terapia , Hemodinâmica , Humanos , Volume Sistólico , Função Ventricular Esquerda
6.
J Sports Sci ; 39(9): 961-968, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33242298

RESUMO

Inadequate hyperventilation and inefficient alveolar to arterial gas exchange are gas exchange challenges that can limit capacity and cause exercise-induced arterial hypoxaemia (EIAH). This work evaluated if the prevalence of gas exchange inefficiencies, defined as AaDO2>25 mmHg, PaCO2>38 mmHg, and/or ΔPaO2>-10 mmHg at any point during constant-load exercise in healthy, active, but not highly trained, individuals suggested an innate sex difference that would make females more susceptible to EIAH. Sixty-four healthy, active males and females completed 18-min of cycling exercise (moderate and vigorous intensity, 9 min/stage). Arterial blood gases were measured at rest and every 3-min during exercise, while constantly assessing gas exchange. Both sexes demonstrated similar levels of AaDO2 widening until the final 3 min of vigorous exercise, where females demonstrated a trend for greater widening than males (16.3±6.2 mmHg vs. 19.1±6.0 mmHg, p=0.07). Males demonstrated a blunted ventilatory response to moderate exercise with higher PaCO2 (38.5±2.6 vs. 36.5±2.4, p=0.002) and a lower ventilation when corrected for workload (0.42±0.1 vs. 0.48±0.1, p=0.002). No significant arterial hypoxaemia occurred, but in 6 M and 5 F SaO2 dropped by ≥2%. There was no difference in prevalence of pulmonary gas exchange inefficiencies between sexes, but the type of inefficiency was influenced by sex.Abbreviations: AaDO2: alveolar-arterial oxygen difference; BP: blood pressure; EIAH: exercise-induced arterial hypoxaemia; F: females; HR: heart rate; M: males; Q: cardiac output; PaCO2: arterial partial pressure of carbon dioxide; PaO2: arterial partial pressure of oxygen; ΔPaO2: change in arterial partial pressure of oxygen; PAO2: alveolar partial pressure of oxygen; RPE: rating of perceived exertion; SaO2: arterial oxygen saturation; VE: ventilation; VE/VCO2: ventilatory equivalent for carbon dioxide; VO2PEAK: peak oxygen consumption; WMAX: workload maximum.


Assuntos
Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Troca Gasosa Pulmonar/fisiologia , Adulto , Dióxido de Carbono/sangue , Teste de Esforço , Feminino , Fluxo Expiratório Forçado/fisiologia , Humanos , Masculino , Oxigênio/sangue , Alvéolos Pulmonares/fisiologia , Fatores Sexuais , Fatores de Tempo , Capacidade Vital/fisiologia , Adulto Jovem
7.
J Physiol ; 598(23): 5379-5390, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32886795

RESUMO

KEY POINTS: Heart failure patients with reduced ejection fraction (HFrEF) exhibit severe limitations in exercise capacity ( V̇O2 peak). One of the primary peripheral mechanisms suggested to underlie exercise intolerance in HFrEF is excessive locomotor muscle group III/IV afferent feedback; however, this has never been investigated in human heart failure. HFrEF patients and controls performed an incremental exercise test to volitional exhaustion to determine V̇O2 peak with lumbar intrathecal fentanyl or placebo. During exercise, cardiac output, leg blood flow and radial artery and femoral venous blood gases were measured. With fentanyl, compared with placebo, patients with HFrEF achieved a higher peak workload, V̇O2 peak, cardiac output, stroke volume and leg blood flow. These findings suggest that locomotor muscle group III/IV afferent feedback in HFrEF leads to increased systemic vascular resistance, which constrains stroke volume, cardiac output and O2 delivery thereby impairing V̇O2 peak and thus exercise capacity. ABSTRACT: To better understand the underlying mechanisms contributing to exercise limitation in heart failure with reduced ejection fraction (HFrEF), we investigated the influence of locomotor muscle group III/IV afferent inhibition via lumbar intrathecal fentanyl on peak exercise capacity ( V̇O2 peak) and the contributory mechanisms. Eleven HFrEF patients and eight healthy matched controls were recruited. The participants performed an incremental exercise test to volitional exhaustion to determine V̇O2 peak with lumbar intrathecal fentanyl or placebo. During exercise, cardiac output and leg blood flow ( Q̇L ) were measured via open-circuit acetylene wash-in technique and constant infusion thermodilution, respectively. Radial artery and femoral venous blood gases were measured. V̇O2 peak was 15% greater with fentanyl compared with placebo for HFrEF (P < 0.01), while no different in the controls. During peak exercise with fentanyl, cardiac output was 12% greater in HFrEF secondary to significant decreases in systemic vascular resistance and increases in stroke volume compared with placebo (all, P < 0.01). From placebo to fentanyl, leg V̇O2 , Q̇L and O2 delivery were greater for HFrEF during peak exercise (all, P < 0.01), but not control. These findings indicate that locomotor muscle group III/IV afferent feedback in patients with HFrEF leads to increased systemic vascular resistance, which constrains stroke volume, cardiac output and O2 delivery, thereby impairing V̇O2 peak and thus exercise capacity. These findings have important clinical implications as V̇O2 peak is highly predictive of morbidity and mortality in HF.


Assuntos
Insuficiência Cardíaca , Exercício Físico , Fentanila , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Músculo Esquelético , Consumo de Oxigênio , Volume Sistólico
8.
Eur Respir J ; 55(2)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31771997

RESUMO

INTRODUCTION: Identification of elevated pulmonary artery pressures during exercise has important diagnostic, prognostic and therapeutic implications. Stress echocardiography is frequently used to estimate pulmonary artery pressures during exercise testing, but data supporting this practice are limited. This study examined the accuracy of Doppler echocardiography for the estimation of pulmonary artery pressures at rest and during exercise. METHODS: Simultaneous cardiac catheterisation-echocardiographic studies were performed at rest and during exercise in 97 subjects with dyspnoea. Echocardiography-estimated pulmonary artery systolic pressure (ePASP) was calculated from the right ventricular (RV) to right atrial (RA) pressure gradient and estimated RA pressure (eRAP), and then compared with directly measured PASP and RAP. RESULTS: Estimated PASP was obtainable in 57% of subjects at rest, but feasibility decreased to 15-16% during exercise, due mainly to an inability to obtain eRAP during stress. Estimated PASP correlated well with direct PASP at rest (r=0.76, p<0.0001; bias -1 mmHg) and during exercise (r=0.76, p=0.001; bias +3 mmHg). When assuming eRAP of 10 mmHg, ePASP correlated with direct PASP (r=0.70, p<0.0001), but substantially underestimated true values (bias +9 mmHg), with the greatest underestimation among patients with severe exercise-induced pulmonary hypertension (EIPH). Estimation of eRAP during exercise from resting eRAP improved discrimination of patients with or without EIPH (area under the curve 0.81), with minimal bias (5 mmHg), but wide limits of agreement (-14-25 mmHg). CONCLUSIONS: The RV-RA pressure gradient can be estimated with reasonable accuracy during exercise when measurable. However, RA hypertension frequently develops in patients with EIPH, and the inability to noninvasively account for this leads to substantial underestimation of exercise pulmonary artery pressures.


Assuntos
Hipertensão Pulmonar , Artéria Pulmonar , Ecocardiografia Doppler , Ecocardiografia sob Estresse , Exercício Físico , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Artéria Pulmonar/diagnóstico por imagem
9.
J Card Fail ; 26(8): 645-651, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31981697

RESUMO

BACKGROUND: Methods for reducing major adverse cardiac events (MACE) in patients after heart transplantation (HTx) are critical for long-term quality outcomes. METHODS AND RESULTS: Patients with cardiopulmonary exercise testing prior to HTx and at least 1 session of cardiac rehabilitation (CR) after HTx were included. Exercise sessions were evaluated as ≥ 23 or < 23 sessions based on recursive partitioning. We included 140 patients who had undergone HTx (women: n = 41 (29%), age: 52 ± 12 years, body mass index: 27 ± 5 kg/m2). Mean follow-up was 4.1 ± 2.7 years, and 44 patients (31%) had a MACE: stroke (n = 1), percutaneous intervention (n = 5), heart failure (n = 6), myocardial infarction (n = 1), rejection (n = 16), or death (n = 15). CR was a significant predictor of MACE, with ≥ 23 sessions associated with a ∼ 60% reduction in MACE risk (hazard ratio [HR]: 0.42, 95% CI: 0.19-0.94, P = 0.035). This remained after adjusting for age, sex and history of diabetes (HR: 0.41, 95% CI: 0.18-0.94, P = 0.035) as well as body mass index and pre-HTx peak oxygen consumption (HR: 0.40, 95% CI: 0.18-0.92, P = 0.031). CONCLUSIONS: After adjustment for covariates of age, sex, diabetes, body mass index, and pre-HTx peak oxygen consumption, CR attendance of ≥ 23 exercise sessions was predictive of lower MACE risk following HTx. In post-HTx patients, CR was associated with MACE prevention and should be viewed as a critical tool in post-HTx treatment strategies.


Assuntos
Reabilitação Cardíaca , Insuficiência Cardíaca , Transplante de Coração , Teste de Esforço , Feminino , Coração , Humanos , Pessoa de Meia-Idade
10.
Exp Physiol ; 105(5): 809-818, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32105387

RESUMO

NEW FINDINGS: What is the central question of this study? How do locomotor muscle metabo- and mechanoreceptor expression compare in heart failure patients and controls? Do relationships exist between the protein expression and cardiopulmonary responses during exercise with locomotor muscle neural afferent feedback inhibition? What is the main finding and its importance? Heart failure patients exhibited greater protein expression of transient receptor potential vanilloid type 1 and cyclooxygenase-2 than controls. These findings are important as they identify receptors that may underlie the augmented locomotor muscle neural afferent feedback in heart failure. ABSTRACT: Heart failure patients with reduced ejection fraction (HFrEF) exhibit abnormal locomotor group III/IV afferent feedback during exercise; however, the underlying mechanisms are unclear. Therefore, the purpose of this study was to determine (1) metabo- and mechanoreceptor expression in HFrEF and controls and (2) relationships between receptor expression and changes in cardiopulmonary responses with afferent inhibition. Ten controls and six HFrEF performed 5 min of cycling exercise at 65% peak workload with lumbar intrathecal fentanyl (FENT) or placebo (PLA). Arterial blood pressure and catecholamines were measured via radial artery catheter. A vastus lateralis muscle biopsy was performed to quantify cyclooxygenase-2 (COX-2), purinergic 2X3 (P2X3 ), transient receptor potential vanilloid type 1 (TRPV 1), acid-sensing ion channel 3 (ASIC3 ), Piezo 1 and Piezo 2 protein expression. TRPV 1 and COX-2 protein expression was greater in HFrEF than controls (both P < 0.04), while P2X3 , ASIC3 , and Piezo 1 and 2 were not different between groups (all P > 0.16). In all participants, COX-2 protein expression was related to the percentage change in ventilation (r = -0.66) and mean arterial pressure (MAP) (r = -0.82) (both P < 0.01) with FENT (relative to PLA) during exercise. In controls, TRPV 1 protein expression was related to the percentage change in systolic blood pressure (r = -0.77, P = 0.02) and MAP (r = -0.72, P = 0.03) with FENT (relative to PLA) during exercise. TRPV 1 and COX-2 protein levels are elevated in HFrEF compared to controls. These findings suggest that the elevated TRPV 1 and COX-2 expression may contribute to the exaggerated locomotor muscle afferent feedback during cycling exercise in HFrEF.


Assuntos
Vias Aferentes , Exercício Físico , Insuficiência Cardíaca/fisiopatologia , Mecanorreceptores/metabolismo , Músculo Quadríceps/fisiologia , Canais Iônicos Sensíveis a Ácido , Idoso , Estudos de Casos e Controles , Ciclo-Oxigenase 2 , Feminino , Fentanila/administração & dosagem , Humanos , Canais Iônicos , Masculino , Pessoa de Meia-Idade , Receptores Purinérgicos P2X3 , Canais de Cátion TRPV
11.
Eur Heart J ; 40(45): 3707-3717, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513270

RESUMO

AIMS: Pulmonary hypertension (PH) represents an important phenotype among the broader spectrum of patients with heart failure with preserved ejection fraction (HFpEF), but its mechanistic basis remains unclear. We hypothesized that activation of endothelin and adrenomedullin, two counterregulatory pathways important in the pathophysiology of PH, would be greater in HFpEF patients with worsening PH, and would correlate with the severity of haemodynamic derangements and limitations in aerobic capacity and cardiopulmonary reserve. METHODS AND RESULTS: Plasma levels of C-terminal pro-endothelin-1 (CT-proET-1) and mid-regional pro-adrenomedullin (MR-proADM), central haemodynamics, echocardiography, and oxygen consumption (VO2) were measured at rest and during exercise in subjects with invasively-verified HFpEF (n = 38) and controls free of HF (n = 20) as part of a prospective study. Plasma levels of CT-proET-1 and MR-proADM were highly correlated with one another (r = 0.89, P < 0.0001), and compared to controls, subjects with HFpEF displayed higher levels of each neurohormone at rest and during exercise. C-terminal pro-endothelin-1 and MR-proADM levels were strongly correlated with mean pulmonary artery (PA) pressure (r = 0.73 and 0.65, both P < 0.0001) and pulmonary capillary wedge pressure (r = 0.67 and r = 0.62, both P < 0.0001) and inversely correlated with PA compliance (r = -0.52 and -0.43, both P < 0.001). As compared to controls, subjects with HFpEF displayed right ventricular (RV) reserve limitation, evidenced by less increases in RV s' and e' tissue velocities, during exercise. Baseline CT-proET-1 and MR-proADM levels were correlated with worse RV diastolic reserve (ΔRV e', r = -0.59 and -0.67, both P < 0.001), reduced cardiac output responses to exercise (r = -0.59 and -0.61, both P < 0.0001), and more severely impaired peak VO2 (r = -0.60 and -0.67, both P < 0.0001). CONCLUSION: Subjects with HFpEF display activation of the endothelin and adrenomedullin neurohormonal pathways, the magnitude of which is associated with pulmonary haemodynamic derangements, limitations in RV functional reserve, reduced cardiac output, and more profoundly impaired exercise capacity in HFpEF. Further study is required to evaluate for causal relationships and determine if therapies targeting these counterregulatory pathways can improve outcomes in patients with the HFpEF-PH phenotype. CLINICAL TRIAL REGISTRATION: NCT01418248; https://clinicaltrials.gov/ct2/results? term=NCT01418248&Search=Search.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Volume Sistólico/fisiologia , Idoso , Pressão Arterial/fisiologia , Fator Natriurético Atrial/sangue , Estudos de Casos e Controles , Estudos Transversais , Ecocardiografia/métodos , Endotelina-1/sangue , Exercício Físico/fisiologia , Tolerância ao Exercício/fisiologia , Feminino , Insuficiência Cardíaca/complicações , Hemodinâmica/fisiologia , Humanos , Hipertensão Pulmonar/etiologia , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Fragmentos de Peptídeos/sangue , Estudos Prospectivos , Artéria Pulmonar/fisiologia
12.
J Card Fail ; 25(4): 278-285, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30822511

RESUMO

BACKGROUND: Patients with heart failure with preserved ejection fraction (HFpEF) exhibit pulmonary abnormalities, but the studies to date have reported wide variability in the ventilatory equivalent for carbon dioxide (V̇E/V̇CO2) slope. It is possible that aging may contribute to that variability. We sought to compare ventilatory efficiency and its components in older and younger HFpEF patients during exercise. METHODS AND RESULTS: Eighteen older (O; 80 ± 4 y) and 19 younger (Y; 59 ± 7 y) HFpEF patients performed cardiopulmonary exercise testing to volitional fatigue. Measurements of arterial blood gases were used to derive VD/VT, dead space ventilation, and alveolar ventilation. V̇E/V̇CO2 slope was greater in older compared with younger HFpEF patients (O 36 ± 7vs Y 31 ± 7; P = .04). At peak exercise, older HFpEF exhibited greater VD/VT compared with younger HFpEF (O 0.37 ± 0.10vs Y 0.28 ± 0.10; P < .01), whereas PaCO2 was not different between groups (P = .58). V̇E and alveolar ventilation were similar (P > .23), but dead space ventilation was greater in older compared with younger HFpEF at peak exercise (P = .04). CONCLUSIONS: Older HFpEF patients exhibit greater ventilatory inefficiency resulting from elevated physiologic dead space during peak exercise compared with younger HFpEF patients. These results suggest that aging can worsen the pathophysiologic mechanisms underlying ventilatory efficiency during exercise in HFpEF.


Assuntos
Envelhecimento/fisiologia , Tolerância ao Exercício/fisiologia , Insuficiência Cardíaca/fisiopatologia , Hiperventilação/etiologia , Pulmão/fisiopatologia , Volume Sistólico/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Idoso , Idoso de 80 Anos ou mais , Gasometria , Dióxido de Carbono/metabolismo , Progressão da Doença , Teste de Esforço/métodos , Feminino , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico , Humanos , Hiperventilação/metabolismo , Hiperventilação/fisiopatologia , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Testes de Função Respiratória
15.
Cardiovasc Diabetol ; 18(1): 104, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412869

RESUMO

BACKGROUND: To examine the effect of high-intensity interval training (HIIT) on metabolic syndrome (MetS) and body composition in cardiac rehabilitation (CR) patients with myocardial infarction (MI). METHODS: We retrospectively screened 174 consecutive patients with MetS enrolled in CR following MI between 2015 and 2018. We included 56 patients who completed 36 CR sessions and pre-post dual-energy X-ray absorptiometry. Of these patients, 42 engaged in HIIT and 14 in moderate-intensity continuous training (MICT). HIIT included 4-8 intervals of high-intensity (30-60 s at RPE 15-17 [Borg 6-20]) and low-intensity (1-5 min at RPE < 14), and MICT included 20-45 min of exercise at RPE 12-14. MetS and body composition variables were compared between MICT and HIIT groups. RESULTS: Compared to MICT, HIIT demonstrated greater reductions in MetS (relative risk = 0.5, 95% CI 0.33-0.75, P < .001), MetS z-score (- 3.6 ± 2.9 vs. - 0.8 ± 3.8, P < .001) and improved MetS components: waist circumference (- 3 ± 5 vs. 1 ± 5 cm, P = .01), fasting blood glucose (- 25.8 ± 34.8 vs. - 3.9 ± 25.8 mg/dl, P < .001), triglycerides (- 67.8 ± 86.7 vs. - 10.4 ± 105.3 mg/dl, P < .001), and diastolic blood pressure (- 7 ± 11 vs. 0 ± 13 mmHg, P = .001). HIIT group demonstrated greater reductions in body fat mass (- 2.1 ± 2.1 vs. 0 ± 2.2 kg, P = .002), with increased body lean mass (0.9 ± 1.9 vs. - 0.9 ± 3.2 kg, P = .01) than the MICT. After matching for exercise energy expenditure, HIIT-induced improvements persisted for MetS z-score (P < .001), MetS components (P < .05), body fat mass (P = .002), body fat (P = .01), and lean mass (P = .03). CONCLUSIONS: Our data suggest that, compared to MICT, supervised HIIT results in greater improvements in MetS and body composition in MI patients with MetS undergoing CR.


Assuntos
Assistência Ambulatorial , Composição Corporal , Reabilitação Cardíaca , Treinamento Intervalado de Alta Intensidade , Síndrome Metabólica/reabilitação , Infarto do Miocárdio/reabilitação , Adiposidade , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/fisiopatologia , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/fisiopatologia , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento
16.
Exp Physiol ; 104(1): 70-80, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30298957

RESUMO

NEW FINDINGS: What is the central question of this study? The goal of this study was to investigate the effect of alterations in tidal volume and alveolar volume on the elevated physiological dead space and the contribution of ventilatory constraints thereof in heart failure patients during submaximal exercise. What is the main finding and its importance? We found that physiological dead space was elevated in heart failure via reduced tidal volume and alveolar volume. Furthermore, the degree of ventilatory constraints was associated with physiological dead space and alveolar volume. ABSTRACT: Patients who have heart failure with reduced ejection fraction (HFrEF) exhibit impaired ventilatory efficiency [i.e. greater ventilatory equivalent for carbon dioxide ( V ̇ E / V ̇ C O 2 ) slope] and elevated physiological dead space (VD /VT ). However, the impact of breathing strategy on VD /VT during submaximal exercise in HFrEF is unclear. The HFrEF (n = 9) and control (CTL, n = 9) participants performed constant-load cycling exercise at similar ventilation ( V ̇ E ). Inspiratory capacity, operating lung volumes and arterial blood gases were measured during submaximal exercise. Arterial blood gases were used to derive VD /VT , alveolar volume, dead space volume, alveolar ventilation and dead space ventilation. During submaximal exercise, HFrEF patients had greater V ̇ E / V ̇ C O 2 slope and VD /VT than CTL subjects (P = 0.01). At similar V ̇ E , HFrEF patients had smaller tidal volumes and alveolar volumes (HFrEF 1.11 ± 0.33 litres versus CTL 1.66 ± 0.37 litres; both P ≤ 0.01), whereas dead space volume was not different (P = 0.47). The augmented breathing frequency in HFrEF patients resulted in greater dead space ventilation compared with CTL subjects (HFrEF 15 ± 4 l min-1 versus CTL 10 ± 5 l min-1 ; P = 0.048). The HFrEF patients exhibited greater increases in expiratory reserve volume and lower inspiratory capacity (as a percentage of predicted) than CTL subjects (both P < 0.05), which were significantly related to VD /VT and alveolar volume in HFrEF patients (all P < 0.03). In HFrEF, the reduced tidal volume and alveolar volume elevate physiological dead space during submaximal exercise, which is worsened in those with the greatest ventilatory constraints. These findings highlight the negative consequences of ventilatory constraints on physiological dead space during submaximal exercise in HFrEF.


Assuntos
Exercício Físico , Insuficiência Cardíaca/fisiopatologia , Pulmão/fisiopatologia , Espaço Morto Respiratório/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Insuficiência Respiratória/fisiopatologia
17.
Eur Heart J ; 39(30): 2810-2821, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29788047

RESUMO

Aims: Increases in left ventricular filling pressure are a fundamental haemodynamic abnormality in heart failure with preserved ejection fraction (HFpEF). However, very little is known regarding how elevated filling pressures cause pulmonary abnormalities or symptoms of dyspnoea. We sought to determine the relationships between simultaneously measured central haemodynamics, symptoms, and lung ventilatory and gas exchange abnormalities during exercise in HFpEF. Methods and results: Subjects with invasively-proven HFpEF (n = 50) and non-cardiac causes of dyspnoea (controls, n = 24) underwent cardiac catheterization at rest and during exercise with simultaneous expired gas analysis. During submaximal (20 W) exercise, subjects with HFpEF displayed higher pulmonary capillary wedge pressures (PCWP) and pulmonary artery pressures, higher Borg perceived dyspnoea scores, and increased ventilatory drive and respiratory rate. At peak exercise, ventilation reserve was reduced in HFpEF compared with controls, with greater dead space ventilation (higher VD/VT). Increasing exercise PCWP was directly correlated with higher perceived dyspnoea scores, lower peak exercise capacity, greater ventilatory drive, worse New York Heart Association (NYHA) functional class, and impaired pulmonary ventilation reserve. Conclusion: This study provides the first evidence linking altered exercise haemodynamics to pulmonary abnormalities and symptoms of dyspnoea in patients with HFpEF. Further study is required to identify the mechanisms by which haemodynamic derangements affect lung function and symptoms and to test novel therapies targeting exercise haemodynamics in HFpEF.


Assuntos
Dispneia/etiologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Pulmão/fisiopatologia , Volume Sistólico , Idoso , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
18.
Circulation ; 135(9): 825-838, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28039229

RESUMO

BACKGROUND: Diagnosis of heart failure with preserved ejection fraction (HFpEF) is challenging and relies largely on demonstration of elevated cardiac filling pressures (pulmonary capillary wedge pressure). Current guidelines recommend use of natriuretic peptides (N-terminal pro-B type natriuretic peptide) and rest/exercise echocardiography (E/e' ratio) to make this determination. Data to support this practice are conflicting. METHODS: Simultaneous echocardiographic-catheterization studies were prospectively conducted at rest and during exercise in subjects with invasively proven HFpEF (n=50) and participants with dyspnea but no identifiable cardiac pathology (n=24). RESULTS: N-Terminal pro-B type natriuretic peptide levels were below the level considered to exclude disease (≤125 pg/mL) in 18% of subjects with HFpEF. E/e' ratio was correlated with directly measured pulmonary capillary wedge pressure at rest (r=0.63, P<0.0001) and during exercise (r=0.57, P<0.0001). Although specific, current guidelines were poorly sensitive, identifying only 34% to 60% of subjects with invasively proven HFpEF on the basis of resting echocardiographic data alone. Addition of exercise echocardiographic data (E/e' ratio>14) improved sensitivity (to 90%) and thus negative predictive value, but decreased specificity (71%). CONCLUSIONS: Currently proposed HFpEF diagnostic guidelines on the basis of resting data are poorly sensitive. Adding exercise E/e' data improves sensitivity and negative predictive value but compromises specificity, suggesting that exercise echocardiography may help rule out HFpEF. These results question the accuracy of current approaches to exclude HFpEF on the basis of resting data alone and reinforce the value of exercise testing using invasive and noninvasive hemodynamic assessments to definitively confirm or refute the diagnosis of HFpEF. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique Identifier: NCT01418248.


Assuntos
Insuficiência Cardíaca/diagnóstico , Volume Sistólico/fisiologia , Idoso , Idoso de 80 Anos ou mais , Ecocardiografia , Teste de Esforço , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/análise , Fragmentos de Peptídeos/análise , Estudos Prospectivos , Função Ventricular Esquerda/fisiologia
20.
J Card Fail ; 24(10): 695-705, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30103021

RESUMO

BACKGROUND: Peak exercise pulmonary oxygen uptake (V̇O2) is a primary marker of prognosis in heart failure (HF). The pathophysiology of impaired peak V̇O2 is unclear in patients. To what extent alveolar airway function affects V̇O2 during cardiopulmonary exercise testing (CPET) has not been fully elucidated. This study aimed to describe how changes in alveolar ventilation (V̇A), volume (VA), and related parameters couple with exercise V̇O2 in HF. METHODS AND RESULTS: A total of 35 patients with HF (left ventricular ejection fraction 20 ± 6%, age 53 ± 7 y) participated in CPET with breath-to-breath measurements of ventilation and gas exchange. At rest, 20 W, and peak exercise, arterial CO2 tension was measured via radial arterial catheterization and used in alveolar equations to derive V̇A and VA. Resting lung diffusion capacity for carbon monoxide (DLCO) was assessed and indexed to VA for each time point. Resting R2 between V̇O2 and V̇A, VA, DLCO, and DLCO/VA was 0.68, 0.18, 0.20, and 0.07, respectively (all P < .05 except DLCO/VA). 20 W R2 between V̇O2 and V̇A, VA, DLCO, and DLCO/VA was 0.64, 0.32, 0.07, and 0.18 (all P < .05 except DLCO). Peak exercise R2 between V̇O2 and V̇A, VA, DLCO, and DLCO/VA was 0.55, 0.31, 0.34, and 0.06 (all P < .05 except DLCO/VA). CONCLUSIONS: These data suggest that alveolar airway function that is not exclusively related to effects caused by localized lung diffusivity affects exercise V̇O2 in moderate-to-severe HF.


Assuntos
Tolerância ao Exercício/fisiologia , Insuficiência Cardíaca/metabolismo , Consumo de Oxigênio/fisiologia , Alvéolos Pulmonares/metabolismo , Capacidade de Difusão Pulmonar/fisiologia , Teste de Esforço , Feminino , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA