Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(1): 186-200, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37656990

RESUMO

Stroke results in local neural disconnection and brain-wide neuronal network dysfunction leading to neurological deficits. Beyond the hyper-acute phase of ischaemic stroke, there is no clinically-approved pharmacological treatment that alleviates sensorimotor impairments. Functional recovery after stroke involves the formation of new or alternative neuronal circuits including existing neural connections. The type-5 metabotropic glutamate receptor (mGluR5) has been shown to modulate brain plasticity and function and is a therapeutic target in neurological diseases outside of stroke. We investigated whether mGluR5 influences functional recovery and network reorganization rodent models of focal ischaemia. Using multiple behavioural tests, we observed that treatment with negative allosteric modulators (NAMs) of mGluR5 (MTEP, fenobam and AFQ056) for 12 days, starting 2 or 10 days after stroke, restored lost sensorimotor functions, without diminishing infarct size. Recovery was evident within hours after initiation of treatment and progressed over the subsequent 12 days. Recovery was prevented by activation of mGluR5 with the positive allosteric modulator VU0360172 and accelerated in mGluR5 knock-out mice compared with wild-type mice. After stroke, multisensory stimulation by enriched environments enhanced recovery, a result prevented by VU0360172, implying a role of mGluR5 in enriched environment-mediated recovery. Additionally, MTEP treatment in conjunction with enriched environment housing provided an additive recovery enhancement compared to either MTEP or enriched environment alone. Using optical intrinsic signal imaging, we observed brain-wide disruptions in resting-state functional connectivity after stroke that were prevented by mGluR5 inhibition in distinct areas of contralesional sensorimotor and bilateral visual cortices. The levels of mGluR5 protein in mice and in tissue samples of stroke patients were unchanged after stroke. We conclude that neuronal circuitry subserving sensorimotor function after stroke is depressed by a mGluR5-dependent maladaptive plasticity mechanism that can be restored by mGluR5 inhibition. Post-acute stroke treatment with mGluR5 NAMs combined with rehabilitative training may represent a novel post-acute stroke therapy.


Assuntos
Isquemia Encefálica , Doenças do Sistema Nervoso , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Isquemia Encefálica/tratamento farmacológico , Camundongos Knockout , Doenças do Sistema Nervoso/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo
2.
Cell Commun Signal ; 22(1): 198, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549115

RESUMO

In normal colon tissue, oestrogen receptor alpha (ERα) is expressed at low levels, while oestrogen receptor beta (ERß) is considered the dominant subtype. However, in colon carcinomas, the ERα/ß ratio is often increased, an observation that prompted us to further investigate ERα's role in colorectal cancer (CRC). Here, we assessed ERα nuclear expression in 351 CRC patients. Among them, 119 exhibited positive ERα nuclear expression, which was significantly higher in cancer tissues than in matched normal tissues. Importantly, patients with positive nuclear ERα expression had a poor prognosis. Furthermore, positive ERα expression correlated with increased levels of the G-protein coupled cysteinyl leukotriene receptor 1 (CysLT1R) and nuclear ß-catenin, both known tumour promoters. In mouse models, ERα expression was decreased in Cysltr1-/- CAC (colitis-associated colon cancer) mice but increased in ApcMin/+ mice with wild-type Cysltr1. In cell experiments, an ERα-specific agonist (PPT) increased cell survival via WNT/ß-catenin signalling. ERα activation also promoted metastasis in a zebrafish xenograft model by affecting the tight junction proteins ZO-1 and Occludin. Pharmacological blockade or siRNA silencing of ERα limited cell survival and metastasis while restoring tight junction protein expression. In conclusion, these findings highlight the potential of ERα as a prognostic marker for CRC and its role in metastasis.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Camundongos , Animais , Receptor alfa de Estrogênio , beta Catenina/metabolismo , Peixe-Zebra/metabolismo , Neoplasias do Colo/patologia , Via de Sinalização Wnt , Receptor beta de Estrogênio/genética , Modelos Animais de Doenças , Neoplasias Colorretais/patologia
3.
Langmuir ; 39(23): 8196-8204, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37267478

RESUMO

Seamless integration between biological systems and electrical components is essential for enabling a twinned biochemical-electrical recording and therapy approach to understand and combat neurological disorders. Employing bioelectronic systems made up of conjugated polymers, which have an innate ability to transport both electronic and ionic charges, provides the possibility of such integration. In particular, translating enzymatically polymerized conductive wires, recently demonstrated in plants and simple organism systems, into mammalian models, is of particular interest for the development of next-generation devices that can monitor and modulate neural signals. As a first step toward achieving this goal, enzyme-mediated polymerization of two thiophene-based monomers is demonstrated on a synthetic lipid bilayer supported on a Au surface. Microgravimetric studies of conducting films polymerized in situ provide insights into their interactions with a lipid bilayer model that mimics the cell membrane. Moreover, the resulting electrical and viscoelastic properties of these self-organizing conducting polymers suggest their potential as materials to form the basis for novel approaches to in vivo neural therapeutics.


Assuntos
Bicamadas Lipídicas , Polímeros , Animais , Polimerização , Membrana Celular , Membranas , Mamíferos
4.
Br J Cancer ; 126(4): 586-597, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34750492

RESUMO

BACKGROUND: Despite intense research, the prognosis for patients with advanced colorectal cancer (CRC) remains poor. The prostaglandin D2 receptors DP1 and DP2 are explored here as potential therapeutic targets for advanced CRC. METHODS: A CRC cohort was analysed to determine whether DP1 and DP2 receptor expression correlates with patient survival. Four colon cancer cell lines and a zebrafish metastasis model were used to explore how DP1/DP2 receptor expression correlates with CRC progression. RESULTS: Analysis of the clinical CRC cohort revealed high DP2 expression in tumour tissue, whereas DP1 expression was low. High DP2 expression negatively correlated with overall survival. Other pathological indicators, such as TNM stage and metastasis, positively correlated with DP2 but not DP1 expression. In accordance, the in vitro results showed high DP2 expression in four CC-cell lines, but only one expressed DP1. DP2 stimulation resulted in increased proliferation, p-ERK1/2 and VEGF expression/secretion. DP2-stimulated cells exhibited increased migration in the zebrafish metastasis model. CONCLUSION: Our results support DP2 receptor expression and signalling as a therapeutic target in CRC progression based on its expression in CRC tissue correlating with poor patient survival and that it triggers proliferation, p-ERK1/2 and VEGF expression and release and increased metastatic activity in CC-cells.


Assuntos
Neoplasias Colorretais/patologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células CACO-2 , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Masculino , Metástase Neoplásica , Estadiamento de Neoplasias , Transplante de Neoplasias , Análise de Sobrevida , Peixe-Zebra
5.
Eur J Pediatr ; 181(8): 3119-3129, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35771354

RESUMO

To compare patterns of sedentary (SED) time (more sedentary, SED + vs less sedentary, SED-), moderate to vigorous physical activity (MVPA) time (more active, MVPA + vs less active, MVPA-), and combinations of behaviors (SED-/MVPA + , SED-/MVPA-, SED + /MVPA + , SED + /MVPA-) regarding nonalcoholic fatty liver diseases (NAFLD) markers. This cross-sectional study included 134 subjects (13.4 ± 2.2 years, body mass index (BMI) 98.9 ± 0.7 percentile, 48.5% females) who underwent 24-h/7-day accelerometry, anthropometric, and biochemical markers (alanine aminotransferase (ALT) as first criterion, and aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), AST/ALT ratio as secondary criteria). A subgroup of 39 patients underwent magnetic resonance imaging-liver fat content (MRI-LFC). Hepatic health was better in SED- (lower ALT, GGT, and MRI-LFC (p < 0.05), higher AST/ALT (p < 0.01)) vs SED + and in MVPA + (lower ALT (p < 0.05), higher AST/ALT (p < 0.01)) vs MVPA- groups after adjustment for age, gender, and Tanner stages. SED-/MVPA + group had the best hepatic health. SED-/MVPA- group had lower ALT and GGT and higher AST/ALT (p < 0.05) in comparison with SED + /MVPA + group independently of BMI. SED time was positively associated with biochemical (high ALT, low AST/ALT ratio) and imaging (high MRI-LFC) markers independently of MVPA. MVPA time was associated with biochemical markers (low ALT, high AST/ALT) but these associations were no longer significant after adjustment for SED time. CONCLUSION: Lower SED time is associated with better hepatic health independently of MVPA. Reducing SED time might be a first step in the management of pediatric obesity NAFLD when increasing MVPA is not possible. WHAT IS KNOWN: • MVPA and SED times are associated with cardiometabolic risks in youths with obesity. • The relationships between NAFLD markers and concomitant MVPA and SED times have not been studied in this population. WHAT IS NEW: • Low SED time is associated with healthier liver enzyme profiles and LFC independent of MVPA. • While low SED/high MVPA is the more desirable pattern, low SED/low MVPA pattern would have healthier liver enzyme profile compared with high MVPA/high SED, independent of BMI, suggesting that reducing SED time irrespective of MVPA is needed to optimize liver health.


Assuntos
Alanina Transaminase , Hepatopatia Gordurosa não Alcoólica , Obesidade Infantil , Comportamento Sedentário , Adolescente , Alanina Transaminase/sangue , Aspartato Aminotransferases , Biomarcadores/sangue , Criança , Estudos Transversais , Exercício Físico/fisiologia , Feminino , Humanos , Fígado , Masculino , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade Infantil/sangue , Obesidade Infantil/fisiopatologia
6.
J Pathol ; 251(3): 297-309, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32333795

RESUMO

Oestrogen receptor ß (ERß) has been suggested to have anti-proliferative and anti-tumour effects in breast and prostate cancer cells, but other studies have indicated its tumour-promoting effects. Understanding the complex effects of this receptor in different contexts requires further study. We reported that high ERß expression is independently associated with improved prognosis in female colorectal cancer (CRC) patients. Herein, we investigated the possible anti-tumour effect of ERß and its selective agonist. CRC patients with high ERß expression had significantly higher levels of membrane-associated ß-catenin, cysteinyl leukotriene receptor 2 (CysLT2 R), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which have anti-tumour effects, but lower levels of nuclear ß-catenin, cysteinyl leukotriene receptor 1 (CysLT1 R), and cyclooxygenase-2 (COX-2), which have tumour-promoting effects. These interesting findings were further supported by two different publicly available CRC mRNA datasets that showed a significant positive correlation between ERß expression and 15-PGDH and CysLT2 R expression and a negative correlation between ERß expression and ß-catenin, CysLT1 R, and COX-2 expression. We next evaluated ERß expression in three different colon cancer mouse models; ERß expression was negatively correlated with tumourigenesis. Furthermore, treatment with the ERß-agonist ERB-041 reduced CysLT1 R, active ß-catenin, and COX-2 levels but increased phospho-ß-catenin, CysLT2 R, and 15-PGDH levels in HCT-116, Caco-2, and SW-480 colon cancer cells compared to vehicle-treated cells. Interestingly, ERB-041-treated cells showed significantly decreased migration, survival, and colonosphere formation and increased apoptotic activity, as indicated by increased CASPASE-3 and apoptotic blebs. Finally, patients with low ERß expression had significantly more distant metastasis at the time of diagnosis than patients with high ERß expression. Therefore, we studied the effects of ERB-041-treated colon cancer cells in a zebrafish xenograft model. We found significantly less distant metastasis of ERB-041-treated cells compared to vehicle-treated cells. These results further support ERß's anti-tumour role in CRC and the possible use of its agonist in CRC patients. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Receptor beta de Estrogênio/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Células CACO-2 , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/genética , Feminino , Genes APC , Células HCT116 , Células HT29 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Metástase Neoplásica , Oxazóis/farmacologia , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
8.
BMC Cancer ; 18(1): 466, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695239

RESUMO

BACKGROUND: The addition of high-dose cytarabine to the treatment of mantle cell lymphoma (MCL) has significantly prolonged survival of patients, but relapses are common and are normally associated with increased resistance. To elucidate the mechanisms responsible for cytarabine resistance, and to create a tool for drug discovery investigations, we established a unique and molecularly reproducible cytarabine resistant model from the Z138 MCL cell line. METHODS: Effects of different substances on cytarabine-sensitive and resistant cells were evaluated by assessment of cell proliferation using [methyl-14C]-thymidine incorporation and molecular changes were investigated by protein and gene expression analyses. RESULTS: Gene expression profiling revealed that major transcriptional changes occur during the initial phase of adaptation to cellular growth in cytarabine containing media, and only few key genes, including SPIB, are deregulated upon the later development of resistance. Resistance was shown to be mediated by down-regulation of the deoxycytidine kinase (dCK) protein, responsible for activation of nucleoside analogue prodrugs. This key event, emphasized by cross-resistance to other nucleoside analogues, did not only effect resistance but also levels of SPIB and NF-κB, as assessed through forced overexpression in resistant cells. Thus, for the first time we show that regulation of drug resistance through prevention of conversion of pro-drug into active drug are closely linked to increased proliferation and resistance to apoptosis in MCL. Using drug libraries, we identify several substances with growth reducing effect on cytarabine resistant cells. We further hypothesized that co-treatment with bortezomib could prevent resistance development. This was confirmed and show that the dCK levels are retained upon co-treatment, indicating a clinical use for bortezomib treatment in combination with cytarabine to avoid development of resistance. The possibility to predict cytarabine resistance in diagnostic samples was assessed, but analysis show that a majority of patients have moderate to high expression of dCK at diagnosis, corresponding well to the initial clinical response to cytarabine treatment. CONCLUSION: We show that cytarabine resistance potentially can be avoided or at least delayed through co-treatment with bortezomib, and that down-regulation of dCK and up-regulation of SPIB and NF-κB are the main molecular events driving cytarabine resistance development.


Assuntos
Antineoplásicos/farmacologia , Bortezomib/farmacologia , Citarabina/farmacologia , Proteínas de Ligação a DNA/genética , Desoxicitidina Quinase/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma de Célula do Manto/genética , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Desoxicitidina Quinase/metabolismo , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Linfoma de Célula do Manto/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
BMC Cancer ; 16: 493, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27430213

RESUMO

BACKGROUND: Mantle cell lymphoma (MCL) is an aggressive disease with short median survival. Molecularly, MCL is defined by the t(11;14) translocation leading to overexpression of the CCND1 gene. However, recent data show that the neural transcription factor SOX11 is a disease defining antigen and several involved signaling pathways have been pin-pointed, among others the Wnt/ß-catenin pathway that is of importance for proliferation in MCL. Therefore, we evaluated a compound library focused on the Wnt pathway with the aim of identifying Wnt-related targets that regulate growth and survival in MCL, with particular focus on SOX11-dependent growth regulation. METHODS: An inducible SOX11 knock-down system was used to functionally screen a library of compounds (n = 75) targeting the Wnt signaling pathway. A functionally interesting target, vacuolar-type H(+)-ATPase (V-ATPase), was further evaluated by western blot, siRNA-mediated gene silencing, immunofluorescence, and flow cytometry. RESULTS: We show that 15 out of 75 compounds targeting the Wnt pathway reduce proliferation in all three MCL cell lines tested. Furthermore, three substances targeting two different targets (V-ATPase and Dkk1) showed SOX11-dependent activity. Further validation analyses were focused on V-ATPase and showed that two independent V-ATPase inhibitors (bafilomycin A1 and concanamycin A) are sensitive to SOX11 levels, causing reduced anti-proliferative response in SOX11 low cells. We further show, using fluorescence imaging and flow cytometry, that V-ATPase is mainly localized to the plasma membrane in primary and MCL cell lines. CONCLUSIONS: We show that SOX11 status affect V-ATPase dependent pathways, and thus may be involved in regulating pH in intracellular and extracellular compartments. The plasma membrane localization of V-ATPase indicates that pH regulation of the immediate extracellular compartment may be of importance for receptor functionality and potentially invasiveness in vivo.


Assuntos
Linfoma de Célula do Manto/tratamento farmacológico , Proteínas de Membrana/metabolismo , Fatores de Transcrição SOXC/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Via de Sinalização Wnt/efeitos dos fármacos , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/genética , Decitabina , Doxiciclina/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrolídeos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Fatores de Transcrição SOXC/genética , Proteínas Wnt/antagonistas & inibidores , beta Catenina/antagonistas & inibidores
10.
Bioorg Med Chem Lett ; 24(8): 1944-7, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24666648

RESUMO

Bexarotene, a retinoid X receptor (RXR) agonist, is being tested as a potential disease modifying treatment for neurodegenerative conditions. To limit the peripheral exposure of bexarotene and release it only in the affected areas of the brain, we designed a prodrug strategy based on the enzyme NAD(P)H/quinone oxidoreductase (NQO1) that is elevated in neurodegenerative diseases. A series of indolequinones (known substrates of NQO1) was synthesized and coupled to bexarotene. Bexarotene-3-(hydroxymethyl)-5-methoxy-1,2-dimethyl-1H-indole-4,7-dione ester 7a was cleaved best by NQO1. The prodrugs are not cleaved by esterase.


Assuntos
Sistemas de Liberação de Medicamentos , Indóis/síntese química , NAD(P)H Desidrogenase (Quinona)/química , Pró-Fármacos/síntese química , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/síntese química , Bexaroteno , Indolquinonas/síntese química , Indolquinonas/química , Indolquinonas/farmacologia , Indóis/química , Indóis/farmacologia , Estrutura Molecular , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Receptores X de Retinoides/agonistas , Tetra-Hidronaftalenos/farmacologia
11.
J Phys Chem B ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942741

RESUMO

The ability of small lipophilic molecules to penetrate the blood-brain barrier through transmembrane diffusion has enabled researchers to explore new diagnostics and therapies for brain disorders. Until now, therapies targeting the brain have mainly relied on biochemical mechanisms, while electrical treatments such as deep brain stimulation often require invasive procedures. An alternative to implanting deep brain stimulation probes could involve administering small molecule precursors intravenously, capable of crossing the blood-brain barrier, and initiating the formation of conductive polymer networks in the brain through in vivo polymerization. This study examines the aggregation behavior of five water-soluble conducting polymer precursors sharing the same conjugate core but differing in side chains, using spectroscopy and various computational chemistry tools. Our findings highlight the significant impact of side chain composition on both aggregation and spectroscopic response.

12.
Nat Commun ; 14(1): 4453, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488105

RESUMO

Bioelectronics can potentially complement classical therapies in nonchronic treatments, such as immunotherapy and cancer. In addition to functionality, minimally invasive implantation methods and bioresorbable materials are central to nonchronic treatments. The latter avoids the need for surgical removal after disease relief. Self-organizing substrate-free organic electrodes meet these criteria and integrate seamlessly into dynamic biological systems in ways difficult for classical rigid solid-state electronics. Here we place bioresorbable electrodes with a brain-matched shear modulus-made from water-dispersed nanoparticles in the brain-in the targeted area using a capillary thinner than a human hair. Thereafter, we show that an optional auxiliary module grows dendrites from the installed conductive structure to seamlessly embed neurons and modify the electrode's volume properties. We demonstrate that these soft electrodes set off a controlled cellular response in the brain when relaying external stimuli and that the biocompatible materials show no tissue damage after bioresorption. These findings encourage further investigation of temporary organic bioelectronics for nonchronic treatments assembled in vivo.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis , Humanos , Materiais Biocompatíveis/química , Eletrodos , Encéfalo , Condutividade Elétrica , Eletrônica
13.
Blood Adv ; 7(24): 7407-7417, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37487020

RESUMO

Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. To elucidate regulatory mechanisms governing the maintenance and propagation of human HSCs ex vivo, we screened libraries of annotated small molecules in human cord blood cells using an optimized assay for detection of functional HSCs during culture. We found that the antifungal agent ciclopirox ethanolamine (CPX) selectively supported immature CD34+CD90+ cells during culture and enhanced their long-term in vivo repopulation capacity. Purified HSCs treated with CPX showed a reduced cell division rate and an enrichment of HSC-specific gene expression patterns. Mechanistically, we found that the HSC stimulating effect of CPX was directly mediated by chelation of the intracellular iron pool, which in turn affected iron-dependent proteins and enzymes mediating cellular metabolism and respiration. Our findings unveil a significant impact of iron homeostasis in regulation of human HSCs, with important implications for both basic HSC biology and clinical hematology.


Assuntos
Células-Tronco Hematopoéticas , Ferro , Humanos , Ciclopirox/farmacologia , Ciclopirox/metabolismo , Ferro/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Etanolaminas/metabolismo , Etanolaminas/farmacologia
14.
Science ; 379(6634): 795-802, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821679

RESUMO

Interfacing electronics with neural tissue is crucial for understanding complex biological functions, but conventional bioelectronics consist of rigid electrodes fundamentally incompatible with living systems. The difference between static solid-state electronics and dynamic biological matter makes seamless integration of the two challenging. To address this incompatibility, we developed a method to dynamically create soft substrate-free conducting materials within the biological environment. We demonstrate in vivo electrode formation in zebrafish and leech models, using endogenous metabolites to trigger enzymatic polymerization of organic precursors within an injectable gel, thereby forming conducting polymer gels with long-range conductivity. This approach can be used to target specific biological substructures and is suitable for nerve stimulation, paving the way for fully integrated, in vivo-fabricated electronics within the nervous system.


Assuntos
Biopolímeros , Encéfalo , Condutividade Elétrica , Enzimas , Sistema Nervoso Periférico , Animais , Biopolímeros/biossíntese , Encéfalo/enzimologia , Eletrodos , Eletrônica , Enzimas/metabolismo , Sanguessugas , Modelos Animais , Sistema Nervoso Periférico/enzimologia , Polimerização , Peixe-Zebra
15.
Acta Neuropathol Commun ; 10(1): 126, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038950

RESUMO

Glioblastoma (GBM) is the most common and most aggressive primary brain tumor in adults. Glioma stem like cells (GSC) represent the highest cellular hierarchy in GBM and have a determining role in tumor growth, recurrence and patient prognosis. However, a better definition of GSC subpopulations, especially at the surgical resection margin, is warranted for improved oncological treatment options. The present study interrogated cells expressing CD105 (CD105+) specifically within the tumor front and the pre-invasive niche as a potential GSC subpopulation. GBM primary cell lines were generated from patients (n = 18) and CD105+ cells were isolated and assessed for stem-like characteristics. In vitro, CD105+ cells proliferated and enriched in serum-containing medium but not in serum-free conditions. CD105+ cells were characterized by Nestin+, Vimentin+ and SOX2-, clearly distinguishing them from SOX2+ GCS. GBM CD105+ cells differentiated into osteocytes and adipocytes but not chondrocytes. Exome sequencing revealed that GBM CD105+ cells matched 83% of somatic mutations in the Cancer cell line encyclopedia, indicating a malignant phenotype and in vivo xenotransplantation assays verified their tumorigenic potential. Cytokine assays showed that immunosuppressive and protumorigenic cytokines such as IL6, IL8, CCL2, CXCL-1 were produced by CD105+ cells. Finally, screening for 88 clinical drugs revealed that GBM CD105+ cells are resistant to most chemotherapeutics except Doxorubicin, Idarubicin, Fludarabine and ABT-751. Our study provides a rationale for targeting tumoral CD105+ cells in order to reshape the tumor microenvironment and block GBM progression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Endoglina/imunologia , Glioblastoma/patologia , Glioma/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Microambiente Tumoral
16.
Nat Commun ; 13(1): 901, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194026

RESUMO

Future brain-machine interfaces, prosthetics, and intelligent soft robotics will require integrating artificial neuromorphic devices with biological systems. Due to their poor biocompatibility, circuit complexity, low energy efficiency, and operating principles fundamentally different from the ion signal modulation of biology, traditional Silicon-based neuromorphic implementations have limited bio-integration potential. Here, we report the first organic electrochemical neurons (OECNs) with ion-modulated spiking, based on all-printed complementary organic electrochemical transistors. We demonstrate facile bio-integration of OECNs with Venus Flytrap (Dionaea muscipula) to induce lobe closure upon input stimuli. The OECNs can also be integrated with all-printed organic electrochemical synapses (OECSs), exhibiting short-term plasticity with paired-pulse facilitation and long-term plasticity with retention >1000 s, facilitating Hebbian learning. These soft and flexible OECNs operate below 0.6 V and respond to multiple stimuli, defining a new vista for localized artificial neuronal systems possible to integrate with bio-signaling systems of plants, invertebrates, and vertebrates.


Assuntos
Interfaces Cérebro-Computador , Robótica , Plasticidade Neuronal , Neurônios , Silício , Sinapses/fisiologia
17.
Chem Mater ; 34(6): 2752-2763, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35360437

RESUMO

Injectable bioelectronics could become an alternative or a complement to traditional drug treatments. To this end, a new self-doped p-type conducting PEDOT-S copolymer (A5) was synthesized. This copolymer formed highly water-dispersed nanoparticles and aggregated into a mixed ion-electron conducting hydrogel when injected into a tissue model. First, we synthetically repeated most of the published methods for PEDOT-S at the lab scale. Surprisingly, analysis using high-resolution matrix-assisted laser desorption ionization-mass spectroscopy showed that almost all the methods generated PEDOT-S derivatives with the same polymer lengths (i.e., oligomers, seven to eight monomers in average); thus, the polymer length cannot account for the differences in the conductivities reported earlier. The main difference, however, was that some methods generated an unintentional copolymer P(EDOT-S/EDOT-OH) that is more prone to aggregate and display higher conductivities in general than the PEDOT-S homopolymer. Based on this, we synthesized the PEDOT-S derivative A5, that displayed the highest film conductivity (33 S cm-1) among all PEDOT-S derivatives synthesized. Injecting A5 nanoparticles into the agarose gel cast with a physiological buffer generated a stable and highly conductive hydrogel (1-5 S cm-1), where no conductive structures were seen in agarose with the other PEDOT-S derivatives. Furthermore, the ion-treated A5 hydrogel remained stable and maintained initial conductivities for 7 months (the longest period tested) in pure water, and A5 mixed with Fe3O4 nanoparticles generated a magnetoconductive relay device in water. Thus, we have successfully synthesized a water-processable, syringe-injectable, and self-doped PEDOT-S polymer capable of forming a conductive hydrogel in tissue mimics, thereby paving a way for future applications within in vivo electronics.

18.
Bioact Mater ; 10: 107-116, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34901533

RESUMO

Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants. Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active µm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 µm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices.

19.
Pediatr Obes ; 17(7): e12897, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35083885

RESUMO

BACKGROUND: Relationships between movement-related behaviours and metabolic health remain underexplored in adolescents with obesity. OBJECTIVES: To compare profiles of sedentary time (more sedentary, SED+ vs. less sedentary, SED-), moderate to vigorous physical activity (MVPA) time (more active, MVPA+ vs. less active, MVPA-) and combinations of behaviours (SED-/MVPA+, SED-/MVPA-, SED+/MVPA+, SED+/MVPA-) in regard to metabolic health. METHODS: One hundred and thirty-four subjects (mean age 13.4 ± 2.2 yrs, mean body mass index [BMI] 98.9 ± 0.7 percentile, 48.5% females) underwent 24 h/7 day accelerometry, anthropometric, body composition, blood pressure (BP), lipid profile and insulin resistance (IR) assessments. RESULTS: Metabolic health was better in SED- [lower fat mass (FM) percentage (p < 0.05), blood pressure (BP) (p < 0.05), homeostasis model assessment of insulin resistance (HOMA-IR) (p < 0.001) and metabolic syndrome risk score (MetScore) (p < 0.001), higher high-density lipoprotein-cholesterol (HDL-c) (p = 0.001)] vs. SED+ group and in MVPA+ [lower triglyceridemia (TG), (p < 0.05), HOMA-IR (p < 0.01) and MetScore (p < 0.001), higher HDL-c (p < 0.01)] vs. MVPA- group after adjustment with age, gender, maturation and BMI. SED-/MVPA+ group had the best metabolic health. While sedentary (p < 0.001) but also MVPA times (p < 0.001) were lower in SED-/MVPA- vs. SED+/MVPA+, SED-/MVPA- had lower FM percentage (p < 0.05), HOMA-IR (p < 0.01) and MetScore (p < 0.05) and higher HDL-c (p < 0.05), independently of BMI. Sedentary time was positively correlated with HOMA-IR and Metscore and negatively correlated with HDL-c after adjustment with MVPA (p < 0.05). MVPA was negatively correlated with HOMA-IR, BP and MetScore and positively correlated with HDL-c after adjustment with sedentary time (p < 0.05). CONCLUSION: Lower sedentary time is associated with a better metabolic health independently of MVPA and might be a first step in the management of pediatric obesity when increasing MVPA is not possible.


Assuntos
Resistência à Insulina , Artes Marciais , Obesidade Infantil , Adolescente , Índice de Massa Corporal , Criança , HDL-Colesterol , Estudos Transversais , Exercício Físico , Feminino , Humanos , Masculino , Obesidade Infantil/epidemiologia , Obesidade Infantil/metabolismo , Comportamento Sedentário , Circunferência da Cintura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA