Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Data Brief ; 55: 110724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100774

RESUMO

In this work, the biochemical activities of seven cyclic peptides were investigated using the insilico approach. The materials used in this work were Spartan 14 for quantum chemical analysis, molecular operating environment software for molecular docking and ADMETSAR 2.0 for pharmacokinetic investigation. The calculated features obtained for each compound were explored and it was observed that the molecules used in this research have potential anti-human insulin-degrading enzyme activities. Also, (3S,6S,9S)-9-((R)-1-(benzyloxy)ethyl)-6-methyl-3-(4-methylphenethyl)-1,4,7,10-tetraazacyclododecane-2,5,8,11-tetraone (compound 2) with highest binding affinity (-7.95349026 kcal/mol) possess utmost ability to inhibit human insulin-degrading enzyme (PDB id: 2g56) than other investigated compounds and acarbose (referenced compound). The pharmacokinetic analysis for compound 2 was examined and compared to the predicted report for the referenced compound.

2.
RSC Adv ; 14(27): 19362-19380, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38887650

RESUMO

This study explored the flavonoid-rich extract of beetroot (Beta vulgaris L.) for type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD) dual therapy by using in vitro and molecular simulation studies. Flavonoid-rich extracts of B. vulgaris fruit were evaluated for their antidiabetic and anti-alzheimic activities. Molecular docking and dynamic simulation were performed to identify potential bioactive flavonoids with dual therapeutic effects on T2D and AD. Flavonoid-rich extracts of B. vulgaris fruit (IC50 = 73.062 ± 0.480 µg mL-1) had moderate activity against α-amylase compared to the standard acarbose (IC50 = 27.104 ± 0.270 µg mL-1). Compared with acarbose, flavonoid-rich extracts of B. vulgaris fruit had appreciable activity against α-glucosidase (IC50 = 17.389 ± 0.436 µg mL-1) (IC50 = 37.564 ± 0.620 µg mL-1). For AChE inhibition, flavonoid-rich extracts of B. vulgaris fruit exhibited (p < 0.0001) inhibitory activity (IC50 = 723.260 ± 5.466 µg mL-1), albeit weaker than that of the standard control, galantamine (IC50 = 27.950 ± 0.122 µg mL-1). Similarly, flavonoid-rich extracts of B. vulgaris fruit showed considerable (p < 0.0001) inhibitory effects on BChE (IC50 = 649.112 ± 0.683 µg mL-1). In contrast, galantamine (IC50 = 23.126 ± 0.683 µg mL-1) is more potent than the extracts of B. vulgaris fruit. Monoamine oxidase (MAO) activity increased in FeSO4-induced brain damage. In contrast, flavonoid-rich extracts of B. vulgaris fruit protected against Fe2+-mediated brain damage by suppressing MAO activity in a concentration-dependent manner. HPLC-DAD profiling of the extracts identified quercetrin, apigenin, rutin, myricetin, iso-quercetrin, p-coumaric acid, ferulic acid, caffeic acid, and gallic acid. Molecular docking studies revealed quercetrin, apigenin, rutin, iso-queretrin, and myricetin were the top docked bioactive flavonoids against the five top target proteins (α-amylase, α-glucosidase AchE, BchE, and MAO). Molecular dynamic simulations revealed that the complexes formed remained stable over the course of the simulation. Collectively, the findings support the prospect of flavonoid-rich extracts of B. vulgaris root functioning as a dual therapy for T2D and AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA