Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031251

RESUMO

Each animal in the Darwinian theater is exposed to a number of abiotic and biotic risk factors causing mortality. Several of these risk factors are intimately associated with the act of energy acquisition as such and with the amount of reserve the organism has available from this acquisition for overcoming temporary distress. Because a considerable fraction of an individual's lifetime energy acquisition is spent on somatic maintenance, there is a close link between energy expenditure on somatic maintenance and mortality risk. Here, we show, by simple life-history theory reasoning backed up by empirical cohort survivorship data, how reduction of mortality risk might be achieved by restraining allocation to somatic maintenance, which enhances lifetime fitness but results in aging. Our results predict the ubiquitous presence of senescent individuals in a highly diverse group of natural animal populations, which may display constant, increasing, or decreasing mortality with age. This suggests that allocation to somatic maintenance is primarily tuned to expected life span by stabilizing selection and is not necessarily traded against reproductive effort or other traits. Due to this ubiquitous strategy of modulating the somatic maintenance budget so as to increase fitness under natural conditions, it follows that individuals kept in protected environments with very low environmental mortality risk will have their expected life span primarily defined by somatic damage accumulation mechanisms laid down by natural selection in the wild.


Assuntos
Envelhecimento , Aptidão Genética , Características de História de Vida , Modelos Biológicos , Seleção Genética , Animais , Feminino , Masculino
2.
Nature ; 533(7602): 200-5, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27088604

RESUMO

The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.


Assuntos
Diploide , Evolução Molecular , Duplicação Gênica/genética , Genes Duplicados/genética , Genoma/genética , Salmo salar/genética , Animais , Elementos de DNA Transponíveis/genética , Feminino , Genômica , Masculino , Modelos Genéticos , Mutagênese/genética , Filogenia , Padrões de Referência , Salmo salar/classificação , Homologia de Sequência
3.
BMC Infect Dis ; 21(1): 548, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107917

RESUMO

BACKGROUND: While invasive social distancing measures have proven efficient to control the spread of pandemics failing wide-scale deployment of vaccines, they carry vast societal costs. The development of a diagnostic methodology for identifying COVID-19 infection through simple testing was a reality only a few weeks after the novel virus was officially announced. Thus, we were interested in exploring the ability of regular testing of non-symptomatic people to reduce cases and thereby offer a non-pharmaceutical tool for controlling the spread of a pandemic. METHODS: We developed a data-driven individual-based epidemiological network model in order to investigate epidemic countermeasures. This models is based on high-resolution demographic data for each municipality in Norway, and each person in the model is subject to Susceptible-Exposed-Infectious-Recovered (SEIR) dynamics. The model was calibrated against hospitalization data in Oslo, Norway, a city with a population of 700k which we have used as the simulations focus. RESULTS: Finding that large households function as hubs for the propagation of COVID-19, we assess the intervention efficiency of targeted pooled household testing (TPHT) repeatedly. For an outbreak with reproductive number R=1.4, we find that weekly TPHT of the 25% largest households brings R below unity. For the case of R=1.2, our results suggest that TPHT with the largest 25% of households every three days in an urban area is as effective as a lockdown in curbing the outbreak. Our investigations of different disease parameters suggest that these results are markedly improved for disease variants that more easily infect young people, and when compliance with self-isolation rules is less than perfect among suspected symptomatic cases. These results are quite robust to changes in the testing frequency, city size, and the household-size distribution. Our results are robust even with only 50% of households willing to participate in TPHT, provided the total number of tests stay unchanged. CONCLUSIONS: Pooled and targeted household testing appears to be a powerful non-pharmaceutical alternative to more invasive social-distancing and lock-down measures as a localized early response to contain epidemic outbreaks.


Assuntos
Controle de Doenças Transmissíveis/métodos , Pandemias/prevenção & controle , Adolescente , Infecções Assintomáticas/epidemiologia , Número Básico de Reprodução , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Teste para COVID-19/métodos , Surtos de Doenças/prevenção & controle , Características da Família , Hospitalização , Humanos , Modelos Teóricos , Noruega/epidemiologia , SARS-CoV-2/isolamento & purificação
4.
Proc Natl Acad Sci U S A ; 114(37): 9894-9899, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847942

RESUMO

The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid [Formula: see text] that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain's interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had [Formula: see text] higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs.


Assuntos
Barreira Hematoencefálica/metabolismo , Líquidos Corporais/metabolismo , Difusão , Líquido Extracelular/metabolismo , Hipocampo/metabolismo , Neurópilo/fisiologia , Animais , Transporte Biológico , Líquido Cefalorraquidiano/metabolismo , Simulação por Computador , Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Humanos , Imageamento Tridimensional , Vasos Linfáticos/fisiologia , Microscopia Eletrônica
5.
BMC Genomics ; 18(1): 484, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655320

RESUMO

We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.


Assuntos
Aquicultura , Conservação dos Recursos Naturais , Genômica , Internacionalidade , Anotação de Sequência Molecular , Salmonidae/genética , Animais , Evolução Molecular , Genômica/economia , Genômica/normas , Fenótipo , Filogenia
6.
Mol Syst Biol ; 12(12): 892, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979908

RESUMO

A major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical-experimental framework for disclosing the presence of such adaptation-speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation-accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic-adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data-driven individual-based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation-speeding mechanisms in general.


Assuntos
Arsênio/farmacologia , Proteínas de Bactérias/genética , Epigênese Genética , Mutação , Saccharomycetales/crescimento & desenvolvimento , Adaptação Fisiológica , Evolução Molecular , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Seleção Genética , Análise de Sequência de DNA , Biologia de Sistemas/métodos
7.
Nature ; 477(7363): 207-10, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21832995

RESUMO

Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.


Assuntos
Gadus morhua/genética , Gadus morhua/imunologia , Genoma/genética , Sistema Imunitário/imunologia , Imunidade/genética , Animais , Evolução Molecular , Genômica , Hemoglobinas/genética , Imunidade/imunologia , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Masculino , Polimorfismo Genético/genética , Sintenia/genética , Receptores Toll-Like/genética
8.
J Physiol ; 594(23): 6909-6928, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27506597

RESUMO

Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model.


Assuntos
Circulação Sanguínea , Modelos Cardiovasculares , Fenômenos Fisiológicos Cardiovasculares , Hemodinâmica , Humanos , Software
9.
Mol Biol Evol ; 32(1): 153-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25349282

RESUMO

Exposing natural selection driving phenotypic and genotypic adaptive differentiation is an extraordinary challenge. Given that an organism's life stages are exposed to the same environmental variations, we reasoned that fitness components, such as the lag, rate, and efficiency of growth, directly reflecting performance in these life stages, should often be selected in concert. We therefore conjectured that correlations between fitness components over natural isolates, in a particular environmental context, would constitute a robust signal of recent selection. Critically, this test for selection requires fitness components to be determined by different genetic loci. To explore our conjecture, we exhaustively evaluated the lag, rate, and efficiency of asexual population growth of natural isolates of the model yeast Saccharomyces cerevisiae in a large variety of nitrogen-limited environments. Overall, fitness components were well correlated under nitrogen restriction. Yeast isolates were further crossed in all pairwise combinations and coinheritance of each fitness component and genetic markers were traced. Trait variations tended to map to quantitative trait loci (QTL) that were private to a single fitness component. We further traced QTLs down to single-nucleotide resolution and uncovered loss-of-function mutations in RIM15, PUT4, DAL1, and DAL4 as the genetic basis for nitrogen source use variations. Effects of SNPs were unique for a single fitness component, strongly arguing against pleiotropy between lag, rate, and efficiency of reproduction under nitrogen restriction. The strong correlations between life stage performances that cannot be explained by pleiotropy compellingly support adaptive differentiation of yeast nitrogen source use and suggest a generic approach for detecting selection.


Assuntos
Nitrogênio/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Molecular , Aptidão Genética , Genótipo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Seleção Genética
10.
PLoS Comput Biol ; 11(1): e1004012, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569257

RESUMO

This year we celebrate the 150th anniversary of the law of mass action. This law is often assumed to have been "there" forever, but it has its own history, background, and a definite starting point. The law has had an impact on chemistry, biochemistry, biomathematics, and systems biology that is difficult to overestimate. It is easily recognized that it is the direct basis for computational enzyme kinetics, ecological systems models, and models for the spread of diseases. The article reviews the explicit and implicit role of the law of mass action in systems biology and reveals how the original, more general formulation of the law emerged one hundred years later ab initio as a very general, canonical representation of biological processes.


Assuntos
Fenômenos Bioquímicos , Modelos Biológicos , Biologia de Sistemas , Cinética
11.
Nat Rev Genet ; 11(12): 855-66, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21085204

RESUMO

A key goal of biology is to understand phenotypic characteristics, such as health, disease and evolutionary fitness. Phenotypic variation is produced through a complex web of interactions between genotype and environment, and such a 'genotype-phenotype' map is inaccessible without the detailed phenotypic data that allow these interactions to be studied. Despite this need, our ability to characterize phenomes - the full set of phenotypes of an individual - lags behind our ability to characterize genomes. Phenomics should be recognized and pursued as an independent discipline to enable the development and adoption of high-throughput and high-dimensional phenotyping.


Assuntos
Genômica/métodos , Fenótipo , Animais , Epigenômica , Perfilação da Expressão Gênica , Humanos
13.
PLoS Genet ; 9(3): e1003388, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555297

RESUMO

The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy-environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%-17% of ploidy-environment interactions. The mechanism of the cell size-based superior reproductive efficiency of haploids during Li(+) exposure was traced to the Li(+) exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li(+) tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.


Assuntos
Diploide , Evolução Molecular , Haploidia , Saccharomyces cerevisiae/genética , Evolução Biológica , Tamanho Celular/efeitos dos fármacos , Cromossomos/efeitos dos fármacos , Cromossomos/genética , Cobre/toxicidade , Ecologia , Interação Gene-Ambiente , Genes Fúngicos Tipo Acasalamento/efeitos dos fármacos , Genes Fúngicos Tipo Acasalamento/genética , Genótipo , Lítio/toxicidade , Reprodução/efeitos dos fármacos , Reprodução/genética
14.
PLoS Comput Biol ; 10(5): e1003634, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24853828

RESUMO

Hypertension is one of the most common age-related chronic disorders, and by predisposing individuals for heart failure, stroke, and kidney disease, it is a major source of morbidity and mortality. Its etiology remains enigmatic despite intense research efforts over many decades. By use of empirically well-constrained computer models describing the coupled function of the baroreceptor reflex and mechanics of the circulatory system, we demonstrate quantitatively that arterial stiffening seems sufficient to explain age-related emergence of hypertension. Specifically, the empirically observed chronic changes in pulse pressure with age and the impaired capacity of hypertensive individuals to regulate short-term changes in blood pressure arise as emergent properties of the integrated system. The results are consistent with available experimental data from chemical and surgical manipulation of the cardio-vascular system. In contrast to widely held opinions, the results suggest that primary hypertension can be attributed to a mechanogenic etiology without challenging current conceptions of renal and sympathetic nervous system function.


Assuntos
Artérias/fisiopatologia , Barorreflexo , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Hipertensão/fisiopatologia , Modelos Cardiovasculares , Rigidez Vascular , Animais , Simulação por Computador , Humanos , Resistência Vascular
15.
PLoS Comput Biol ; 9(5): e1003053, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671414

RESUMO

Additive genetic variance (VA ) and total genetic variance (VG ) are core concepts in biomedical, evolutionary and production-biology genetics. What determines the large variation in reported VA /VG ratios from line-cross experiments is not well understood. Here we report how the VA /VG ratio, and thus the ratio between narrow and broad sense heritability (h(2) /H(2) ), varies as a function of the regulatory architecture underlying genotype-to-phenotype (GP) maps. We studied five dynamic models (of the cAMP pathway, the glycolysis, the circadian rhythms, the cell cycle, and heart cell dynamics). We assumed genetic variation to be reflected in model parameters and extracted phenotypes summarizing the system dynamics. Even when imposing purely linear genotype to parameter maps and no environmental variation, we observed quite low VA /VG ratios. In particular, systems with positive feedback and cyclic dynamics gave more non-monotone genotype-phenotype maps and much lower VA /VG ratios than those without. The results show that some regulatory architectures consistently maintain a transparent genotype-to-phenotype relationship, whereas other architectures generate more subtle patterns. Our approach can be used to elucidate these relationships across a whole range of biological systems in a systematic fashion.


Assuntos
Genótipo , Padrões de Herança/genética , Modelos Genéticos , Fenótipo , Animais , Ciclo Celular/genética , Ritmo Circadiano/genética , Biologia Computacional , Simulação por Computador , AMP Cíclico , Glicólise/genética , Método de Monte Carlo , Miócitos Cardíacos , Plantas
16.
PLoS Comput Biol ; 9(12): e1003386, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367247

RESUMO

The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K(+)-concentration to increase by several millimolars. The clearance of this excess K(+) depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering) within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K(+)-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i) increases the local astrocytic uptake of K(+), (ii) suppresses extracellular transport of K(+), (iii) increases axial transport of K(+) within astrocytes, and (iv) facilitates astrocytic relase of K(+) in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K(+).


Assuntos
Astrócitos/metabolismo , Modelos Biológicos , Neurônios/metabolismo , Potássio/metabolismo , Cátions Monovalentes , Difusão , Potenciais da Membrana
17.
PLoS Genet ; 7(6): e1002111, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21698134

RESUMO

A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism.


Assuntos
Variação Genética , Fenótipo , Saccharomyces/genética , África Ocidental , Alelos , Evolução Biológica , Proliferação de Células , Ecologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Redes e Vias Metabólicas/genética , Locos de Características Quantitativas/genética , Saccharomyces/citologia , Saccharomyces/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Seleção Genética , Especificidade da Espécie
18.
Brain Struct Funct ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916724

RESUMO

In layer II of the entorhinal cortex, the principal neurons that project to the dentate gyrus and the CA3/2 hippocampal fields markedly express the large glycoprotein reelin (Re + ECLII neurons). In rodents, neurons located at the dorsal extreme of the EC, which border the rhinal fissure, express the highest levels, and the expression gradually decreases at levels successively further away from the rhinal fissure. Here, we test two predictions deducible from the hypothesis that reelin expression is strongly correlated with neuronal metabolic rate. Since the mitochondrial turnover rate serves as a proxy for energy expenditure, the mitophagy rate arguably also qualifies as such. Because messenger RNA of the canonical promitophagic BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) is known to be highly expressed in the EC, we predicted that Bnip3 would be upregulated in Re + ECLII neurons, and that the degree of upregulation would strongly correlate with the expression level of reelin in these neurons. We confirm both predictions, supporting that the energy requirement of Re + ECLII neurons is generally high and that there is a systematic increase in metabolic rate as one moves successively closer to the rhinal fissure. Intriguingly, the systematic variation in energy requirement of the neurons that manifest the observed reelin gradient appears to be consonant with the level of spatial and temporal detail by which they encode information about the external environment.

19.
J Physiol ; 591(8): 2055-66, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23401613

RESUMO

The genotype-phenotype map (GP map) concept applies to any time point in the ontogeny of a living system. It is the outcome of very complex dynamics that include environmental effects, and bridging the genotype-phenotype gap is synonymous with understanding these dynamics. The context for this understanding is physiology, and the disciplinary goals of physiology do indeed demand the physiological community to seek this understanding. We claim that this task is beyond reach without use of mathematical models that bind together genetic and phenotypic data in a causally cohesive way. We provide illustrations of such causally cohesive genotype-phenotype models where the phenotypes span from gene expression profiles to development of whole organs. Bridging the genotype-phenotype gap also demands that large-scale biological ('omics') data and associated bioinformatics resources be more effectively integrated with computational physiology than is currently the case. A third major element is the need for developing a phenomics technology way beyond current state of the art, and we advocate the establishment of a Human Phenome Programme solidly grounded on biophysically based mathematical descriptions of human physiology.


Assuntos
Genótipo , Modelos Biológicos , Fenótipo , Animais , Biologia Computacional , Humanos
20.
Mol Biol Evol ; 29(7): 1781-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22319169

RESUMO

A fundamental question in biology is whether variation in organisms primarily emerges as a function of adaptation or as a function of neutral genetic drift. Trait variation in the model organism baker's yeast follows population bottlenecks rather than environmental boundaries suggesting that it primarily results from genetic drift. Based on the yeast life history, we hypothesized that population-specific loss-of-function mutations emerging in genes recently released from selection is the predominant cause of trait variation within the species. As retention of one functional copy of a gene in diploid yeasts is typically sufficient to maintain completely unperturbed performance, we also conjectured that a crossing of natural yeasts from populations with different loss-of-function mutations would provide a further efficient test bed for this hypothesis. Charting the first species-wide map of trait inheritance in a eukaryotic organism, we found trait heredity to be strongly biased toward diploid hybrid performance exactly mimicking the performance of the best of the parents, as expected given a complete dominance of functional over nonfunctional alleles. Best parent heterosis, partial dominance, and negative nonadditivity were all rare phenomena. Nonadditive inheritance was observed primarily in crosses involving at least one very poor performing parent, most frequently of the West African population, and when molecularly dissected, loss-of-function alleles were identified as the underlying cause. These findings provide support for that population-specific loss-of-function mutations do have a strong impact on genotype-phenotype maps and underscores the role of neutral genetic drift as a driver for trait variation within species.


Assuntos
Saccharomyces cerevisiae/genética , Alelos , Diploide , Ecossistema , Genes Fúngicos , Deriva Genética , Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA