Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Malar J ; 22(1): 298, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798779

RESUMO

BACKGROUND: The rise of insecticide resistance against malaria vectors in sub-Saharan Africa has resulted in the need to consider other methods of vector control. The potential use of biological methods, including larvivorous fish, Bacillus thuringiensis israelensis (Bti) and plant shading, is sustainable and environmentally friendly options. This study examined the survivorship of Anopheles arabiensis and Anopheles funestus larvae and habitat productivity in four permanent habitat types in Homa Bay county, western Kenya. METHODS: Predator densities were studied in a laboratory setup while habitat productivity and larval survivorship was studied in field setup. RESULTS: Fish were observed as the most efficient predator (75.8% larval reduction rate) followed by water boatman (69%), and dragonfly nymph (69.5%) in predation rates. Lower predation rates were observed in backswimmers (31%), water beetles (14.9%), water spiders (12.2%), mayflies (7.3%), and tadpoles (6.9%). Increase in predator density in the field setup resulted in decreased Culex larval density. Larval and pupa age-specific distribution was determined and their survivorship curves constructed. Combined larvae (Stage I-IV) to pupa mortality was over 97% for An. arabiensis and 100% for An. funestus. The highest larval stage survival rate was from larval stages I to II and the lowest from larval stage IV to pupa. Stage-specific life tables indicated high mortality rates at every developmental stage, especially at the larval stage II and III. CONCLUSION: Determination of the efficiency of various larval predators and habitat productivity will help with the correct identification of productive habitats and selection of complementary vector control methods through environmental management and/or predator introduction (for instance fish) in the habitats.


Assuntos
Anopheles , Ephemeroptera , Odonatos , Animais , Larva , Sobrevivência , Quênia , Mosquitos Vetores , Baías , Ecossistema , Água
2.
J Infect Dis ; 226(9): 1657-1666, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056912

RESUMO

BACKGROUND: Irrigated agriculture enhances food security, but it potentially promotes mosquito-borne disease transmission and affects vector intervention effectiveness. This study was conducted in the irrigated and nonirrigated areas of rural Homa Bay and Kisumu Counties, Kenya. METHODS: We performed cross-sectional and longitudinal surveys to determine Plasmodium infection prevalence, clinical malaria incidence, molecular force of infection (molFOI), and multiplicity of infection. We examined the impact of irrigation on the effectiveness of the new interventions. RESULTS: We found that irrigation was associated with >2-fold higher Plasmodium infection prevalence and 3-fold higher clinical malaria incidence compared to the nonirrigated area. Residents in the irrigated area experienced persistent, low-density parasite infections and higher molFOI. Addition of indoor residual spraying was effective in reducing malaria burden, but the reduction was more pronounced in the nonirrigated area than in the irrigated area. CONCLUSIONS: Our findings collectively suggest that irrigation may sustain and enhance Plasmodium transmission and affects intervention effectiveness.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Humanos , Controle de Mosquitos , Anopheles/parasitologia , Estudos Transversais , Mosquitos Vetores , Malária/epidemiologia
3.
Malar J ; 21(1): 272, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153552

RESUMO

BACKGROUND: Long-lasting insecticidal nets (LLINs) have been the primary vector control strategy until indoor residual spraying (IRS) was added in Homa Bay and Migori Counties in western Kenya. The objective of this study was to evaluate the impact of LLINs integrated with IRS on the prevalence of asymptomatic and submicroscopic Plasmodium infections in Homa Bay County. METHODS: A two-stage cluster sampling procedure was employed to enroll study participants aged ≥ 6 months old. Four consecutive community cross-sectional surveys for Plasmodium infection were conducted in residents of Homa Bay county, Kenya. Prior to the start of the study, all study households received LLINs, which were distributed between June 2017 and March 2018. The first (February 2018) and second (June 2018) surveys were conducted before and after the first round of IRS (Feb-Mar 2018), while the third (February 2019) and fourth (June 2019) surveys were conducted before and after the second application of IRS (February-March 2019). Finger-prick blood samples were obtained to prepare thick and thin smears for microscopic determination and qPCR diagnosis of Plasmodium genus. RESULTS: Plasmodium spp. infection prevalence by microscopy was 18.5% (113/610) before IRS, 14.2% (105/737) and 3.3% (24/720) after the first round of IRS and 1.3% (11/849) after the second round of IRS (p < 0.0001). Submicroscopic (blood smear negative, qPCR positive) parasitaemia reduced from 18.9% (115/610) before IRS to 5.4% (46/849) after IRS (p < 0.0001). However, the proportion of PCR positive infections that were submicroscopic increased from 50.4% (115/228) to 80.7% (46/57) over the study period (p < 0.0001). Similarly, while the absolute number and proportions of microscopy positives which were asymptomatic decreased from 12% (73/610) to 1.2% (9/849) (p < 0.0001), the relative proportion increased. Geometric mean density of P. falciparum parasitaemia decreased over the 2-year study period (p < 0.0001). CONCLUSIONS: These data suggest that two annual rounds of IRS integrated with LLINs significantly reduced the prevalence of Plasmodium parasitaemia, while the proportion of asymptomatic and submicroscopic infections increased. To reduce cryptic P. falciparum transmission and improve malaria control, strategies aimed at reducing the number of asymptomatic and submicroscopic infections should be considered.


Assuntos
Inseticidas , Malária Falciparum , Malária , Plasmodium , Infecções Assintomáticas/epidemiologia , Baías , Estudos Transversais , Humanos , Lactente , Quênia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Controle de Mosquitos/métodos , Parasitemia/epidemiologia , Parasitemia/prevenção & controle , Plasmodium falciparum
4.
Parasitol Res ; 121(12): 3529-3545, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36203064

RESUMO

Irrigation not only helps to improve food security but also creates numerous water bodies for mosquito production. This study assessed the effect of irrigation on malaria vector bionomics and transmission in a semi-arid site with ongoing malaria vector control program. The effectiveness of CDC light traps in the surveillance of malaria vectors was also evaluated relative to the human landing catches (HLCs) method. Adult mosquitoes were sampled in two study sites representing irrigated and non-irrigated agroecosystems in western Kenya using a variety of trapping methods. The mosquito samples were identified to species and assayed for host blood meal source and Plasmodium spp. sporozoite infection using polymerase chain reaction. Anopheles arabiensis was the dominant malaria vector in the two study sites and occurred in significantly higher densities in irrigated study site compared to the non-irrigated study site. The difference in indoor resting density of An. arabiensis during the dry and wet seasons was not significant. Other species, including An. funestus, An. coustani, and An. pharoensis, were collected. The An. funestus indoor resting density was 0.23 in irrigated study site while almost none of this species was collected in the non-irrigated study site. The human blood index (HBI) for An. arabiensis in the irrigated study site was 3.44% and significantly higher than 0.00% for the non-irrigated study site. In the irrigated study site, the HBI of An. arabiensis was 3.90% and 5.20% indoor and outdoor, respectively. The HBI of An. funestus was 49.43% and significantly higher compared to 3.44% for An. arabiensis in the irrigated study site. The annual entomologic inoculation rate for An. arabiensis in the irrigated study site was 0.41 and 0.30 infective bites/person/year indoor and outdoor, respectively, whereas no transmission was observed in the non-irrigated study site. The CDC light trap performed consistently with HLC in terms of vector density. These findings demonstrate that irrigated agriculture may increase the risk of malaria transmission in irrigated areas compared to the non-irrigated areas and highlight the need to complement the existing malaria vector interventions with novel tools targeting the larvae and both indoor and outdoor biting vector populations.


Assuntos
Anopheles , Malária , Adulto , Animais , Humanos , Quênia/epidemiologia , Mosquitos Vetores , Ecologia , Controle de Mosquitos/métodos
5.
Malar J ; 20(1): 472, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930283

RESUMO

BACKGROUND: The gold standard for diagnosing Plasmodium falciparum infection is microscopic examination of Giemsa-stained peripheral blood smears. The effectiveness of this procedure for infection surveillance and malaria control may be limited by a relatively high parasitaemia detection threshold. Persons with microscopically undetectable infections may go untreated, contributing to ongoing transmission to mosquito vectors. The purpose of this study was to determine the magnitude and determinants of undiagnosed submicroscopic P. falciparum infections in a rural area of western Kenya. METHODS: A health facility-based survey was conducted, and 367 patients seeking treatment for symptoms consistent with uncomplicated malaria in Homa Bay County were enrolled. The frequency of submicroscopic P. falciparum infection was measured by comparing the prevalence of infection based on light microscopic inspection of thick blood smears versus real-time polymerase chain reaction (RT-PCR) targeting P. falciparum 18S rRNA gene. Long-lasting insecticidal net (LLIN) use, participation in nocturnal outdoor activities, and gender were considered as potential determinants of submicroscopic infections. RESULTS: Microscopic inspection of blood smears was positive for asexual P. falciparum parasites in 14.7% (54/367) of cases. All of these samples were confirmed by RT-PCR. 35.8% (112/313) of blood smear negative cases were positive by RT-PCR, i.e., submicroscopic infection, resulting in an overall prevalence by RT-PCR alone of 45.2% compared to 14.7% for blood smear alone. Females had a higher prevalence of submicroscopic infections (35.6% or 72 out of 202 individuals, 95% CI 28.9-42.3) compared to males (24.2%, 40 of 165 individuals, 95% CI 17.6-30.8). The risk of submicroscopic infections in LLIN users was about half that of non-LLIN users (OR = 0.59). There was no difference in the prevalence of submicroscopic infections of study participants who were active in nocturnal outdoor activities versus those who were not active (OR = 0.91). Patients who participated in nocturnal outdoor activities and use LLINs while indoors had a slightly higher risk of submicroscopic infection than those who did not use LLINs (OR = 1.48). CONCLUSION: Microscopic inspection of blood smears from persons with malaria symptoms for asexual stage P. falciparum should be supplemented by more sensitive diagnostic tests in order to reduce ongoing transmission of P. falciparum parasites to local mosquito vectors.


Assuntos
Malária Falciparum/epidemiologia , Microscopia/estatística & dados numéricos , Plasmodium falciparum/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/estatística & dados numéricos , População Rural/estatística & dados numéricos , Doenças não Diagnosticadas/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Prevalência , Doenças não Diagnosticadas/parasitologia , Adulto Jovem
6.
J Med Entomol ; 60(1): 202-212, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334018

RESUMO

Several sub-Saharan African countries rely on irrigation for food production. This study examined the impact of environmental modifications resulting from irrigation on the ecology of aquatic stages of malaria vectors in a semi-arid region of western Kenya. Mosquito larvae were collected from irrigated and non-irrigated ecosystems during seasonal cross-sectional and monthly longitudinal studies to assess habitat availability, stability, and productivity of anophelines in temporary, semipermanent, and permanent habitats during the dry and wet seasons. The duration of habitat stability was also compared between selected habitats. Emergence traps were used to determine the daily production of female adult mosquitoes from different habitat types. Malaria vectors were morphologically identified and sibling species subjected to molecular analysis. Data was statistically compared between the two ecosystems. After aggregating the data, the overall malaria vector productivity for habitats in the two ecosystems was estimated. Immatures of the malaria vector (Anopheles arabiensis) Patton (Diptera: Culicidae) comprised 98.3% of the Anopheles in both the irrigated and non-irrigated habitats. The irrigated ecosystem had the most habitats, higher larval densities, and produced 85.8% of emerged adult females. These results showed that irrigation provided conditions that increased habitat availability, stability, and diversity, consequently increasing the An. arabiensis production and potential risk of malaria transmission throughout the year. The irrigated ecosystems increased the number of habitats suitable for Anopheles breeding by about 3-fold compared to non-irrigated ecosystems. These results suggest that water management in the irrigation systems of western Kenya would serve as an effective method for malaria vector control.


Assuntos
Anopheles , Malária , Feminino , Animais , Ecossistema , Quênia , Estudos Transversais , Mosquitos Vetores , Larva
7.
Am J Trop Med Hyg ; 107(2): 484-491, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35895424

RESUMO

Expanding agricultural irrigation efforts to enhance food security and socioeconomic development in sub-Saharan Africa may affect malaria transmission and socioeconomic variables that increase the risk of anemia in local communities. We compared the prevalence of anemia, Plasmodium falciparum infection, and indicators of socioeconomic status related to nutrition in communities in Homa Bay County, Kenya, where an agricultural irrigation scheme has been implemented, to that in nearby communities where there is no agricultural irrigation. Cross-sectional surveys conducted showed that anemia prevalence defined by WHO criteria (hemoglobin < 11 g/dL) was less in communities in the irrigated areas than in the non-irrigated areas during the wet season (38.9% and 51.5%, χ2 = 4.29, P = 0.001) and the dry season (25.2% and 34.1%, χ2 = 7.33, P = 0.007). In contrast, Plasmodium falciparum infection prevalence was greater during the wet season in irrigated areas than in non-irrigated areas (15.3% versus 7.8%, χ2 = 8.7, P = 0.003). There was, however, no difference during the dry season (infection prevalence, < 1.8%). Indicators of nutritional status pertinent to anemia pathogenesis such as weekly consumption of non-heme- and heme-containing foods and household income were greater in communities located within the irrigation scheme versus those outside the irrigation scheme (P < 0.0001). These data indicate that current agricultural irrigation schemes in malaria-endemic communities in this area have reduced the risk of anemia. Future studies should include diagnostic tests of iron deficiency, parasitic worm infections, and genetic hemoglobin disorders to inform public health interventions aimed at reducing community anemia burden.


Assuntos
Anemia , Malária Falciparum , Malária , Humanos , Quênia/epidemiologia , Estudos Transversais , Malária/epidemiologia , Malária Falciparum/parasitologia , Anemia/epidemiologia , Hemoglobinas , Prevalência
8.
Parasit Vectors ; 15(1): 340, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167549

RESUMO

BACKGROUND: Identification and characterization of larval habitats, documentation of Anopheles spp. composition and abundance, and Plasmodium spp. infection burden are critical components of integrated vector management. The present study aimed to investigate the effect of landscape heterogeneity on entomological and parasitological indices of malaria in western Kenya. METHODS: A cross-sectional entomological and parasitological survey was conducted along an altitudinal transect in three eco-epidemiological zones: lakeshore along the lakeside, hillside, and highland plateau during the wet and dry seasons in 2020 in Kisumu County, Kenya. Larval habitats for Anopheles mosquitoes were identified and characterized. Adult mosquitoes were sampled using pyrethrum spray catches (PSC). Finger prick blood samples were taken from residents and examined for malaria parasites by real-time PCR (RT-PCR). RESULTS: Increased risk of Plasmodium falciparum infection was associated with residency in the lakeshore zone, school-age children, rainy season, and no ITNs (χ2 = 41.201, df = 9, P < 0.0001). Similarly, lakeshore zone and the rainy season significantly increased Anopheles spp. abundance. However, house structures such as wall type and whether the eave spaces were closed or open, as well as the use of ITNs, did not affect Anopheles spp. densities in the homes (χ2 = 38.695, df = 7, P < 0.0001). Anopheles funestus (41.8%) and An. arabiensis (29.1%) were the most abundant vectors in all zones. Sporozoite prevalence was 5.6% and 3.2% in the two species respectively. The lakeshore zone had the highest sporozoite prevalence (4.4%, 7/160) and inoculation rates (135.2 infective bites/person/year). High larval densities were significantly associated with lakeshore zone and hillside zones, animal hoof prints and tire truck larval habitats, wetland and pasture land, and the wet season. The larval habitat types differed significantly across the landscape zones and seasonality (χ2 = 1453.044, df = 298, P < 0.0001). CONCLUSION: The empirical evidence on the impact of landscape heterogeneity and seasonality on vector densities, parasite transmission, and Plasmodium infections in humans emphasizes the importance of tailoring specific adaptive environmental management interventions to specific landscape attributes to have a significant impact on transmission reduction.


Assuntos
Anopheles , Malária Falciparum , Malária , Adulto , Animais , Anopheles/parasitologia , Criança , Estudos Transversais , Humanos , Quênia/epidemiologia , Larva , Malária/epidemiologia , Malária Falciparum/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/genética , Estações do Ano , Esporozoítos
9.
PLoS One ; 17(4): e0266394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35390042

RESUMO

BACKGROUND: Leading transmission-blocking vaccine candidates such as Plasmodium falciparum surface protein 25 (Pfs25 gene) may undergo antigenic alterations which may render them ineffective or allele-specific. This study examines the level of genetic diversity, signature of selection and drivers of Pfs25 polymorphisms of parasites population in regions of western Kenya with varying malaria transmission intensities. METHODS: Dry blood spots (DBS) were collected in 2018 and 2019 from febrile outpatients with malaria at health facilities in malaria-endemic areas of Homa Bay, Kisumu (Chulaimbo) and the epidemic-prone highland area of Kisii. Parasites DNA were extracted from DBS using Chelex method. Species identification was performed using real-time PCR. The 460 base pairs (domains 1-4) of the Pfs25 were amplified and sequenced for a total of 180 P. falciparum-infected blood samples. RESULTS: Nine of ten polymorphic sites were identified for the first time. Overall, Pfs25 exhibited low nucleotide diversity (0.04×10-2) and low mutation frequencies (1.3% to 7.7%). Chulaimbo had the highest frequency (15.4%) of mutated sites followed by Kisii (6.7%) and Homa Bay (5.1%). Neutrality tests of Pfs25 variations showed significant negative values of Tajima's D (-2.15, p<0.01) and Fu's F (-10.91, p<0.001) statistics tests. Three loci pairs (123, 372), (364, 428) and (390, 394) were detected to be under linkage disequilibrium and none had history of recombination. These results suggested that purifying selection and inbreeding might be the drivers of the observed variation in Pfs25. CONCLUSION: Given the low level of nucleotide diversity, it is unlikely that a Pfs25 antigen-based vaccine would be affected by antigenic variations. However, continued monitoring of Pfs25 immunogenic domain 3 for possible variants that might impact vaccine antibody binding is warranted.


Assuntos
Vacinas Antimaláricas , Proteínas de Protozoários , Seleção Genética , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Humanos , Quênia/epidemiologia , Vacinas Antimaláricas/genética , Malária Falciparum/epidemiologia , Mutação , Nucleotídeos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
10.
Parasit Vectors ; 15(1): 416, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352453

RESUMO

BACKGROUND: Malaria in western Kenya is currently characterized by sustained high Plasmodial transmission and infection resurgence, despite positive responses in some areas following intensified malaria control interventions since 2006. This study aimed to evaluate long-term changes in malaria transmission profiles and to assess patterns of asymptomatic malaria infections in school children aged 5-15 years at three sites in western Kenya with heterogeneous malaria transmission and simultaneous malaria control interventions. METHODS: The study was conducted from 2018 to 2019 and is based on data taken every third year from 2005 to 2014 during a longitudinal parasitological and mosquito adult surveillance and malaria control programme that was initiated in 2002 in the villages of Kombewa, Iguhu, and Marani. Plasmodium spp. infections were determined using microscopy. Mosquito samples were identified to species and host blood meal source and sporozoite infections were assayed using polymerase chain reaction. RESULTS: Plasmodium falciparum was the only malaria parasite evaluated during this study (2018-2019). Asymptomatic malaria parasite prevalence in school children decreased in all sites from 2005 to 2008. However, since 2011, parasite prevalence has resurged by > 40% in Kombewa and Marani. Malaria vector densities showed similar reductions from 2005 to 2008 in all sites, rose steadily until 2014, and decreased again. Overall, Kombewa had a higher risk of infection compared to Iguhu (χ2 = 552.52, df = 1, P < 0.0001) and Marani (χ2 = 1127.99, df = 1, P < 0.0001). There was a significant difference in probability of non-infection during malaria episodes (log-rank test, χ2 = 617.59, df = 2, P < 0.0001) in the study sites, with Kombewa having the least median time of non-infection during malaria episodes. Gender bias toward males in infection was observed (χ2 = 27.17, df = 1, P < 0.0001). The annual entomological inoculation rates were 5.12, 3.65, and 0.50 infective bites/person/year at Kombewa, Iguhu, and Marani, respectively, during 2018 to 2019. CONCLUSIONS: Malaria prevalence in western Kenya remains high and has resurged in some sites despite continuous intervention efforts. Targeting malaria interventions to those with asymptomatic infections who serve as human reservoirs might decrease malaria transmission and prevent resurgences. Longitudinal monitoring enables detection of changes in parasitological and entomological profiles and provides core baseline data for the evaluation of vector interventions and guidance for future planning of malaria control.


Assuntos
Anopheles , Malária Falciparum , Malária , Criança , Animais , Feminino , Humanos , Masculino , Quênia/epidemiologia , Anopheles/fisiologia , Estudos Prospectivos , Mosquitos Vetores , Sexismo , Malária Falciparum/parasitologia , Plasmodium falciparum
11.
Parasit Vectors ; 14(1): 335, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174946

RESUMO

BACKGROUND: Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. METHODS: The study was carried out in 2018-2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. RESULTS: Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8-84% to 83.3-78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1-16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. CONCLUSION: Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Irrigação Agrícola , Animais , Anopheles/genética , Anopheles/metabolismo , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Quênia , Masculino , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Permetrina/farmacologia , Piretrinas/farmacologia
12.
Parasit Vectors ; 10(1): 429, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927428

RESUMO

BACKGROUND: Insecticide resistance has emerged as one of the major challenges facing National Malaria Control Programmes in Africa. A well-coordinated national database on insecticide resistance (IRBase) can facilitate the development of effective strategies for managing insecticide resistance and sustaining the effectiveness of chemical-based vector control measures. The aim of this study was to assemble a database on the current status of insecticide resistance among malaria vectors in Kenya. METHODS: Data was obtained from published literature through PubMed, HINARI and Google Scholar searches and unpublished literature from government reports, research institutions reports and malaria control programme reports. Each data source was assigned a unique identification code and entered into Microsoft Excel 2010 datasheets. Base maps on the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya were generated using ArcGIS Desktop 10.1 (ESRI, Redlands, CA, USA). RESULTS: Insecticide resistance status among the major malaria vectors in Kenya was reported in all the four classes of insecticides including pyrethroids, carbamates, organochlorines and organophosphates. Resistance to pyrethroids has been detected in Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.) while resistance to carbamates was limited to An. gambiae (s.s.) and An. arabiensis. Resistance to the organochlorine was reported in An. gambiae (s.s.) and An. funestus (s.s.) while resistance to organophosphates was reported in An. gambiae (s.l.) only. The mechanisms of insecticide resistance among malaria vectors reported include the kdr mutations (L 1014S and L 1014F) and elevated activity in carboxylesterase, glutathione S-transferases (GST) and monooxygenases. The kdr mutations L 1014S and L 1014F were detected in An. gambiae (s.s.) and An. arabiensis populations. Elevated activity of monooxygenases has been detected in both An. arabiensis and An. gambiae (s.s.) populations while the elevated activity of carboxylesterase and GST has been detected only in An. arabiensis populations. CONCLUSIONS: The geographical maps show the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya. The database generated will provide a guide to intervention policies and programmes in the fight against malaria.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/parasitologia , Animais , Anopheles/genética , Carbamatos/farmacologia , Geografia , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão , Mosquitos Vetores/genética , Mutação , Organofosfatos/farmacologia , Piretrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA