Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(2): 027001, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867454

RESUMO

The theory of symmetry indicators has enabled database searches for topological materials in normal conducting phases, which has led to several encyclopedic topological material databases. To date, such a database for topological superconductors is yet to be achieved because of the lack of information about pairing symmetries of realistic materials. In this Letter, sidestepping this issue, we tackle an alternative problem: the predictions of topological and nodal superconductivity in materials for each single-valued representation of point groups. Based on recently developed symmetry indicators for superconductors, we provide comprehensive mappings from pairing symmetries to the topological or nodal superconducting nature for nonmagnetic materials listed in the Inorganic Crystal Structure Database. We quantitatively show that around 90% of computed materials are topological or nodal superconductors when a pairing that belongs to a one-dimensional nontrivial representation of point groups is assumed. When materials are representation-enforced nodal superconductors, positions and shapes of the nodes are also identified. When combined with experiments, our results will help us understand the pairing mechanism and facilitate realizations of the long-sought Majorana fermions promising for topological quantum computations.

2.
Sci Adv ; 6(18): eaaz8367, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32426480

RESUMO

Topological superconductors are exotic phases of matter featuring robust surface states that could be leveraged for topological quantum computation. A useful guiding principle for the search of topological superconductors is to relate the topological invariants with the behavior of the pairing order parameter on the normal-state Fermi surfaces. The existing formulas, however, become inadequate for the prediction of the recently proposed classes of topological crystalline superconductors. In this work, we advance the theory of symmetry indicators for topological (crystalline) superconductors to cover all space groups. Our main result is the exhaustive computation of the indicator groups for superconductors under a variety of symmetry settings. We further illustrate the power of this approach by analyzing fourfold symmetric superconductors with or without inversion symmetry and show that the indicators can diagnose topological superconductors with surface states of different dimensionalities or dictate gaplessness in the bulk excitation spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA