Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(7): e23043, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37342898

RESUMO

FGF homologous factors (FHFs) are the least described group of fibroblast growth factors (FGFs). The FHF subfamily consists of four proteins: FGF11, FGF12, FGF13, and FGF14. Until recently, FHFs were thought to be intracellular, non-signaling molecules, despite sharing structural and sequence similarities with other members of FGF family that can be secreted and activate cell signaling by interacting with surface receptors. Here, we show that despite lacking a canonical signal peptide for secretion, FHFs are exported to the extracellular space. Furthermore, we propose that their secretion mechanism is similar to the unconventional secretion of FGF2. The secreted FHFs are biologically active and trigger signaling in cells expressing FGF receptors (FGFRs). Using recombinant proteins, we demonstrated their direct binding to FGFR1, resulting in the activation of downstream signaling and the internalization of the FHF-FGFR1 complex. The effect of receptor activation by FHF proteins is an anti-apoptotic response of the cell.


Assuntos
Fatores de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional
2.
Cell Commun Signal ; 22(1): 270, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750548

RESUMO

Fibroblast growth factor receptor 1 (FGFR1) is a N-glycosylated cell surface receptor tyrosine kinase, which upon recognition of specific extracellular ligands, fibroblast growth factors (FGFs), initiates an intracellular signaling. FGFR1 signaling ensures homeostasis of cells by fine-tuning essential cellular processes, like differentiation, division, motility and death. FGFR1 activity is coordinated at multiple steps and unbalanced FGFR1 signaling contributes to developmental diseases and cancers. One of the crucial control mechanisms over FGFR1 signaling is receptor endocytosis, which allows for rapid targeting of FGF-activated FGFR1 to lysosomes for degradation and the signal termination. We have recently demonstrated that N-glycans of FGFR1 are recognized by a precise set of extracellular galectins, secreted and intracellular multivalent lectins implicated in a plethora of cellular processes and altered in immune responses and cancers. Specific galectins trigger FGFR1 clustering, resulting in activation of the receptor and in initiation of intracellular signaling cascades that shape the cell physiology. Although some of galectin family members emerged recently as key players in the clathrin-independent endocytosis of specific cargoes, their impact on endocytosis of FGFR1 was largely unknown.Here we assessed the contribution of extracellular galectins to the cellular uptake of FGFR1. We demonstrate that only galectin-1 induces internalization of FGFR1, whereas the majority of galectins predominantly inhibit endocytosis of the receptor. We focused on three representative galectins: galectin-1, -7 and -8 and we demonstrate that although all these galectins directly activate FGFR1 by the receptor crosslinking mechanism, they exert different effects on FGFR1 endocytosis. Galectin-1-mediated internalization of FGFR1 doesn't require galectin-1 multivalency and occurs via clathrin-mediated endocytosis, resembling in this way the uptake of FGF/FGFR1 complex. In contrast galectin-7 and -8 impede FGFR1 endocytosis, causing stabilization of the receptor on the cell surface and prolonged propagation of the signals. Furthermore, using protein engineering approaches we demonstrate that it is possible to modulate or even fully reverse the endocytic potential of galectins.


Assuntos
Endocitose , Galectina 1 , Galectinas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Galectina 1/metabolismo , Galectina 1/genética , Galectinas/metabolismo , Transdução de Sinais , Animais
3.
Cell Commun Signal ; 22(1): 175, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468333

RESUMO

Galectins constitute a class of lectins that specifically interact with ß-galactoside sugars in glycoconjugates and are implicated in diverse cellular processes, including transport, autophagy or signaling. Since most of the activity of galectins depends on their ability to bind sugar chains, galectins exert their functions mainly in the extracellular space or at the cell surface, which are microenvironments highly enriched in glycoconjugates. Galectins are also abundant inside cells, but their specific intracellular functions are largely unknown. Here we report that galectin-1, -3, -7 and -8 directly interact with the proteinaceous core of fibroblast growth factor 12 (FGF12) in the cytosol and in nucleus. We demonstrate that binding of galectin-1 to FGF12 in the cytosol blocks FGF12 secretion. Furthermore, we show that intracellular galectin-1 affects the assembly of FGF12-containing nuclear/nucleolar ribosome biogenesis complexes consisting of NOLC1 and TCOF1. Our data provide a new link between galectins and FGF proteins, revealing an unexpected glycosylation-independent intracellular interplay between these groups of proteins.


Assuntos
Galectina 1 , Galectinas , Galectinas/metabolismo , Fatores de Crescimento de Fibroblastos , Glicoconjugados , Ribossomos/metabolismo
4.
Cell Mol Life Sci ; 80(4): 113, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012400

RESUMO

FGF/FGFR signaling is critical for the development and homeostasis of the human body and imbalanced FGF/FGFR contributes to the progression of severe diseases, including cancers. FGFRs are N-glycosylated, but the role of these modifications is largely unknown. Galectins are extracellular carbohydrate-binding proteins implicated in a plethora of processes in heathy and malignant cells. Here, we identified a precise set of galectins (galectin-1, -3, -7, and -8) that directly interact with N-glycans of FGFRs. We demonstrated that galectins bind N-glycan chains of the membrane-proximal D3 domain of FGFR1 and trigger differential clustering of FGFR1, resulting in activation of the receptor and initiation of downstream signaling cascades. Using engineered galectins with controlled valency, we provide evidence that N-glycosylation-dependent clustering of FGFR1 constitutes a mechanism for FGFR1 stimulation by galectins. We revealed that the consequences of galectin/FGFR signaling for cell physiology are markedly different from the effects induced by canonical FGF/FGFR units, with galectin/FGFR signaling affecting cell viability and metabolic activity. Furthermore, we showed that galectins are capable of activating an FGFR pool inaccessible for FGF1, enhancing the amplitude of transduced signals. Summarizing, our data identify a novel mechanism of FGFR activation, in which the information stored in the N-glycans of FGFRs provides previously unanticipated information about FGFRs' spatial distribution, which is differentially deciphered by distinct multivalent galectins, affecting signal transmission and cell fate.


Assuntos
Galectinas , Transdução de Sinais , Humanos , Galectinas/metabolismo , Transdução de Sinais/fisiologia , Fosforilação , Polissacarídeos/metabolismo , Glicosilação
5.
Differentiation ; : 100740, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38042708

RESUMO

Fibroblast growth factor 12 (FGF12) belongs to the fibroblast growth factor homologous factors (FHF) subfamily, which is also known as the FGF11 subfamily. The human FGF12 gene is located on chromosome 3 and consists of four introns and five coding exons. Their alternative splicing results in two FGF12 isoforms - the shorter 'b' isoform and the longer 'a' isoform. Structurally, the core domain of FGF12, is highly homologous to that of the other FGF proteins, providing the classical tertiary structure of ß-trefoil. FGF12 is expressed in various tissues, most abundantly in excitable cells such as neurons and cardiomyocytes. For many years, FGF12 was thought to be exclusively an intracellular protein, but recent studies have shown that it can be secreted despite the absence of a canonical signal for secretion. The best-studied function of FGF12 relates to its interaction with sodium channels. In addition, FGF12 forms complexes with signaling proteins, regulates the cytoskeletal system, binds to the FGF receptors activating signaling cascades to prevent apoptosis and interacts with the ribosome biogenesis complex. Importantly, FGF12 has been linked to nervous system disorders, cancers and cardiac diseases such as epileptic encephalopathy, pulmonary hypertension and cardiac arrhythmias, making it a potential target for gene therapy as well as a therapeutic agent.

6.
Cell Commun Signal ; 21(1): 322, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946177

RESUMO

The unfolded protein response is a survival signaling pathway that is induced during various types of ER stress. Here, we determine IRE1's role in miRNA regulation during ER stress. During induction of ER stress in human bronchial epithelial cells, we utilized next generation sequencing to demonstrate that pre-miR-301a and pre-miR-106b were significantly increased in the presence of an IRE1 inhibitor. Conversely, using nuclear-cytosolic fractionation on ER stressed cells, we found that these pre-miRNAs were decreased in the nuclear fractions without the IRE1 inhibitor. We also found that miR-301a-3p targets the proapoptotic UPR factor growth arrest and DNA-damage-inducible alpha (GADD45A). Inhibiting miR-301a-3p levels or blocking its predicted miRNA binding site in GADD45A's 3' UTR with a target protector increased GADD45A mRNA expression. Furthermore, an elevation of XBP1s expression had no effect on GADD45A mRNA expression. We also demonstrate that the introduction of a target protector for the miR-301a-3p binding site in GADD45A mRNA during ER stress promoted cell death in the airway epithelial cells. In summary, these results indicate that IRE1's endonuclease activity is a two-edged sword that can splice XBP1 mRNA to stabilize survival or degrade pre-miR-301a to elevate GADD45A mRNA expression to lead to apoptosis. Video Abstract.


Assuntos
MicroRNAs , Humanos , Apoptose/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , Regulação para Cima
7.
Cell Commun Signal ; 21(1): 177, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480072

RESUMO

Fibroblast growth factor receptor 1 (FGFR1) is a heavily N-glycosylated cell surface receptor tyrosine kinase that transmits signals across the plasma membrane, in response to fibroblast growth factors (FGFs). Balanced FGF/FGFR1 signaling is crucial for the development and homeostasis of the human body, and aberrant FGFR1 is frequently observed in various cancers. In addition to its predominant localization to the plasma membrane, FGFR1 has also been detected inside cells, mainly in the nuclear lumen, where it modulates gene expression. However, the exact mechanism of FGFR1 nuclear transport is still unknown. In this study, we generated a glycosylation-free mutant of FGFR1, FGFR1.GF, and demonstrated that it is localized primarily to the nuclear envelope. We show that reintroducing N-glycans into the D3 domain cannot redirect FGFR1 to the plasma membrane or exclude the receptor from the nuclear envelope. Reestablishment of D2 domain N-glycans largely inhibits FGFR1 accumulation in the nuclear envelope, but the receptor continues to accumulate inside the cell, mainly in the ER. Only the simultaneous presence of N-glycans of the D2 and D3 domains of FGFR1 promotes efficient transport of FGFR1 to the plasma membrane. We demonstrate that while disturbed FGFR1 folding results in partial FGFR1 accumulation in the ER, impaired FGFR1 secretion drives FGFR1 trafficking to the nuclear envelope. Intracellular FGFR1.GF displays a high level of autoactivation, suggesting the presence of nuclear FGFR1 signaling, which is independent of FGF. Using mass spectrometry and proximity ligation assay, we identified novel binding partners of the nuclear envelope-localized FGFR1, providing insights into its cellular functions. Collectively, our data define N-glycosylation of FGFR1 as an important regulator of FGFR1 kinase activity and, most importantly, as a switchable signal for FGFR1 trafficking between the nuclear envelope and plasma membrane, which, due to spatial restrictions, shapes FGFR1 interactome and cellular function. Video Abstract.


Assuntos
Membrana Nuclear , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Humanos , Membrana Celular , Glicosilação , Fatores de Crescimento de Fibroblastos
8.
Cell Commun Signal ; 21(1): 122, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231412

RESUMO

Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute complex signaling hubs that are crucial for the development and homeostasis of the human body. Most of FGFs are released by cells using the conventional secretory pathway and are N-glycosylated, yet the role of FGFs glycosylation is largely unknown. Here, we identify N-glycans of FGFs as binding sites for a specific set of extracellular lectins, galectins - 1, -3, -7 and - 8. We demonstrate that galectins attract N-glycosylated FGF4 to the cell surface, forming a reservoir of the growth factor in the extracellular matrix. Furthermore, we show that distinct galectins differentially modulate FGF4 signaling and FGF4-dependent cellular processes. Using engineered variants of galectins with altered valency we demonstrate that multivalency of galectins is critical for the adjustment of FGF4 activity. Summarizing, our data reveal a novel regulatory module within FGF signaling, in which the glyco-code in FGFs provides previously unanticipated information differentially deciphered by multivalent galectins, affecting signal transduction and cell physiology. Video Abstract.


Assuntos
Fatores de Crescimento de Fibroblastos , Galectinas , Humanos , Galectinas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Polissacarídeos
9.
Cell Commun Signal ; 20(1): 182, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411431

RESUMO

Among the FGF proteins, the least characterized superfamily is the group of fibroblast growth factor homologous factors (FHFs). To date, the main role of FHFs has been primarily seen in the modulation of voltage-gated ion channels, but a full picture of the function of FHFs inside the cell is far from complete. In the present study, we focused on identifying novel FGF12 binding partners to indicate its intracellular functions. Among the identified proteins, a significant number were nuclear proteins, especially RNA-binding proteins involved in translational processes, such as ribosomal processing and modification. We have demonstrated that FGF12 is localized to the nucleolus, where it interacts with NOLC1 and TCOF1, proteins involved in the assembly of functional ribosomes. Interactions with both NOLC1 and TCOF1 are unique to FGF12, as other FHF proteins only bind to TCOF1. The formation of nucleolar FGF12 complexes with NOLC1 and TCOF1 is phosphorylation-dependent and requires the C-terminal region of FGF12. Surprisingly, NOLC1 and TCOF1 are unable to interact with each other in the absence of FGF12. Taken together, our data link FHF proteins to nucleoli for the first time and suggest a novel and unexpected role for FGF12 in ribosome biogenesis. Video Abstract.


Assuntos
Fatores de Crescimento de Fibroblastos , Ribossomos , Proteínas Nucleares , Fosforilação
10.
Mol Cell ; 56(5): 641-52, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25454944

RESUMO

The majority of preproteins destined for mitochondria carry N-terminal presequences. The presequence translocase of the inner mitochondrial membrane (TIM23 complex) plays a central role in protein sorting. Preproteins are either translocated through the TIM23 complex into the matrix or are laterally released into the inner membrane. We report that the small hydrophobic protein Mgr2 controls the lateral release of preproteins. Mgr2 interacts with preproteins in transit through the TIM23 complex. Overexpression of Mgr2 delays preprotein release, whereas a lack of Mgr2 promotes preprotein sorting into the inner membrane. Preproteins with a defective inner membrane sorting signal are translocated into the matrix in wild-type mitochondria but are released into the inner membrane in Mgr2-deficient mitochondria. We conclude that Mgr2 functions as a lateral gatekeeper of the mitochondrial presequence translocase, providing quality control for the membrane sorting of preproteins.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/genética , Metotrexato/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
11.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955648

RESUMO

Precise anticancer therapies employing cytotoxic conjugates constitute a side-effect-limited, highly attractive alternative to commonly used cancer treatment modalities, such as conventional chemotherapy, radiotherapy or surgical interventions. Receptor tyrosine kinases are a large family of N-glycoproteins intensively studied as molecular targets for cytotoxic conjugates in various cancers. At the cell surface, these receptors are embedded in a dense carbohydrate layer formed by numerous plasma membrane glycoproteins. The complexity of the cell surface architecture is further increased by galectins, secreted lectins capable of recognizing and clustering glycoconjugates, affecting their motility and activity. Cell surface N-glycosylation is intensively remodeled by cancer cells; however, the contribution of this phenomenon to the efficiency of treatment with cytotoxic conjugates is largely unknown. Here, we evaluated the significance of N-glycosylation for the internalization and toxicity of conjugates targeting two model receptor tyrosine kinases strongly implicated in cancer: HER2 and FGFR1. We employed three conjugates of distinct molecular architecture and specificity: AffibodyHER2-vcMMAE (targeting HER2), vcMMAE-KCK-FGF1.E and T-Fc-vcMMAE (recognizing different epitopes within FGFR1). We demonstrated that inhibition of N-glycosylation reduced the cellular uptake of all conjugates tested and provided evidence for a role of the galectin network in conjugate internalization. In vitro binding studies revealed that the reduced uptake of conjugates is not due to impaired HER2 and FGFR1 binding. Importantly, we demonstrated that alteration of N-glycosylation can affect the cytotoxic potential of conjugates. Our data implicate a key role for cell surface N-glycosylation in the delivery of cytotoxic conjugates into cancer cells.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Galectinas/metabolismo , Glicosilação , Humanos , Neoplasias/tratamento farmacológico , Tirosina/metabolismo
12.
Mol Med ; 27(1): 46, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962559

RESUMO

BACKGROUND: Antibody drug conjugates (ADCs) represent one of the most promising approaches in the current immuno-oncology research. The precise delivery of cytotoxic drugs to the cancer cells using ADCs specific for tumor-associated antigens enables sparing the healthy cells and thereby reduces unwanted side effects. Overexpression of fibroblast growth factor receptor 1 (FGFR1) has been demonstrated in numerous tumors and thereby constitutes a convenient molecular target for selective cancer treatment. We have recently engineered tetravalent anti-FGFR1 antibody, T-Fc, and have demonstrated that it displays extremely efficient internalization into FGFR1 producing cells, a feature highly desirable in the ADC approach. We have revealed that T-Fc mediates clustering of FGFR1, largely enhancing the uptake of FGFR1-T-Fc complexes by induction of clathrin-independent endocytic routes. The aim of this study was to obtain highly internalizing cytotoxic conjugate of the T-Fc for specific delivery of drugs into FGFR1-positive cancer cells. METHODS: Conjugation of the T-Fc to a cytotoxic payload, vcMMAE, was carried out via maleimide chemistry, yielding the T-Fc-vcMMAE. The specific binding of the T-Fc-vcMMAE conjugate to FGFR1 was confirmed in vitro with BLI technique. Confocal microscopy and flow cytometry were applied to determine FGFR1-dependence of the T-Fc-vcMMAE internalization. Western blot analyses of FGFR1-dependent signaling were conducted to assess the impact of the T-Fc-vcMMAE on FGFR1 activation and initiation of downstream signaling cascades. Finally, using FGFR1-negative and FGFR1-possitive cell lines, the cytotoxic potential of the T-Fc-vcMMAE was evaluated. RESULTS: We have performed the efficient conjugation of the tetravalent engineered antibody with a cytotoxic drug and generated FGFR1-specific ADC molecule, T-Fc-vcMMAE. We have demonstrated that T-Fc-vcMMAE conjugate exhibits high selectivity and affinity for FGFR1, similarly to T-Fc. Furthermore, we have shown that T-Fc constitutes an effective drug delivery vehicle as T-Fc-vcMMAE was efficiently and selectively internalized by FGFR1-producing cells leading to their death. Interestingly, we show that the efficiency of the uptake of T-Fc-vcMMAE corresponds well with the cytotoxicity of the conjugate, but doesn't correlate with the FGFR1expression level. CONCLUSION: Our results show that T-Fc-vcMMAE fulfills the key criteria for the successful cytotoxic drug carrier in a targeted approach against FGFR1-positive cancer cells. Furthermore, our data implicate that not solely expression level of the receptor, but rather its cellular trafficking should be taken into account for selection of suitable molecular targets and cancer models for successful ADC approach.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Imunoconjugados/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Imunofluorescência , Expressão Gênica , Engenharia Genética , Humanos , Imunoconjugados/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
13.
J Biomed Sci ; 28(1): 69, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635096

RESUMO

BACKGROUND: Overexpression of FGFR1 is observed in numerous tumors and therefore this receptor constitutes an attractive molecular target for selective cancer treatment with cytotoxic conjugates. The success of cancer therapy with cytotoxic conjugates largely relies on the precise recognition of a cancer-specific marker by a targeting molecule within the conjugate and its subsequent cellular internalization by receptor mediated endocytosis. We have recently demonstrated that efficiency and mechanism of FGFR1 internalization are governed by spatial distribution of the receptor in the plasma membrane, where clustering of FGFR1 into larger oligomers stimulated fast and highly efficient uptake of the receptor by simultaneous engagement of multiple endocytic routes. Based on these findings we aimed to develop a modular, self-assembly system for generation of oligomeric cytotoxic conjugates, capable of FGFR1 clustering, for targeting FGFR1-overproducing cancer cells. METHODS: Engineered FGF1 was used as FGFR1-recognition molecule and tailored for enhanced stability and site-specific attachment of the cytotoxic drug. Modified streptavidin, allowing for controlled oligomerization of FGF1 variant was used for self-assembly of well-defined FGF1 oligomers of different valency and oligomeric cytotoxic conjugate. Protein biochemistry methods were applied to obtain highly pure FGF1 oligomers and the oligomeric cytotoxic conjugate. Diverse biophysical, biochemical and cell biology tests were used to evaluate FGFR1 binding, internalization and the cytotoxicity of obtained oligomers. RESULTS: Developed multivalent FGF1 complexes are characterized by well-defined architecture, enhanced FGFR1 binding and improved cellular uptake. This successful strategy was applied to construct tetrameric cytotoxic conjugate targeting FGFR1-producing cancer cells. We have shown that enhanced affinity for the receptor and improved internalization result in a superior cytotoxicity of the tetrameric conjugate compared to the monomeric one. CONCLUSIONS: Our data implicate that oligomerization of the targeting molecules constitutes an attractive strategy for improvement of the cytotoxicity of conjugates recognizing cancer-specific biomarkers. Importantly, the presented approach can be easily adapted for other tumor markers.


Assuntos
Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
14.
Biomacromolecules ; 22(12): 5349-5362, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34855396

RESUMO

Fibroblast growth factor receptor 1 (FGFR1) is an integral membrane protein that transmits prolife signals through the plasma membrane. Overexpression of FGFR1 has been reported in various tumor types, and therefore, this receptor constitutes an attractive molecular target for selective anticancer therapies. Here, we present a novel system for generation of intrinsically fluorescent, self-assembling, oligomeric cytotoxic conjugates with high affinity and efficient internalization targeting FGFR1. In our approach, we employed FGF1 as an FGFR1 recognizing molecule and genetically fused it to green fluorescent protein polygons (GFPp), a fluorescent oligomerization scaffold, resulting in a set of GFPp_FGF1 oligomers with largely improved receptor binding. To validate the applicability of using GFPp_FGF1 oligomers as cancer probes and drug carriers in targeted therapy of cancers with aberrant FGFR1, we selected a trimeric variant from generated GFPp_FGF1 oligomers and further engineered it by introducing FGF1-stabilizing mutations and by incorporating the cytotoxic drug monomethyl auristatin E (MMAE) in a site-specific manner. The resulting intrinsically fluorescent, trimeric cytotoxic conjugate 3xGFPp_FGF1E_LPET_MMAE exhibits nanomolar affinity for the receptor and very high stability. Notably, the intrinsic fluorescence of 3xGFPp_FGF1E_LPET_MMAE allows for tracking the cellular transport of the conjugate, demonstrating that 3xGFPp_FGF1E_LPET_MMAE is efficiently and selectively internalized into cells expressing FGFR1. Importantly, we show that 3xGFPp_FGF1E_LPET_MMAE displays very high cytotoxicity against a panel of different cancer cells overproducing FGFR1 while remaining neutral toward cells devoid of FGFR1 expression. Our data implicate that the engineered fluorescent conjugates can be used for imaging and targeted therapy of FGFR1-overproducing cancers.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ligação Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
15.
Cell Commun Signal ; 18(1): 69, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357892

RESUMO

Fibroblast growth factors (FGFs) via their receptors (FGFRs) transduce signals from the extracellular space to the cell interior, modulating pivotal cellular processes such as cell proliferation, motility, metabolism and death. FGF superfamily includes a group of fibroblast growth factor homologous factors (FHFs), proteins whose function is still largely unknown. Since FHFs lack the signal sequence for secretion and are unable to induce FGFR-dependent cell proliferation, these proteins were considered as intracellular proteins that are not involved in signal transduction via FGFRs. Here we demonstrate for the first time that FHF1 directly interacts with all four major FGFRs. FHF1 binding causes efficient FGFR activation and initiation of receptor-dependent signaling cascades. However, the biological effect of FHF1 differs from the one elicited by canonical FGFs, as extracellular FHF1 protects cells from apoptosis, but is unable to stimulate cell division. Our data define FHF1 as a FGFR ligand, emphasizing much greater similarity between FHFs and canonical FGFs than previously indicated. Video Abstract. (MP4 38460 kb).


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Apoptose , Humanos , Camundongos , Células NIH 3T3 , Ligação Proteica , Transdução de Sinais
16.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526859

RESUMO

Fibroblast growth factor 2 (FGF2) is a heparin-binding growth factor with broad mitogenic and cell survival activities. Its effector functions are induced upon the formation of 2:2 FGF2:FGFR1 tetrameric complex. To facilitate receptor activation, and therefore, to improve the FGF2 biological properties, we preorganized dimeric ligand by a covalent linkage of two FGF2 molecules. Mutations of the FGF2 WT protein were designed to obtain variants with a single surface-exposed reactive cysteine for the chemical conjugation via maleimide-thiol reaction with bis-functionalized linear PEG linkers. We developed eight FGF2 dimers of defined topology, differing in mutual orientation of individual FGF2 molecules. The engineered proteins remained functional in terms of FGFR downstream signaling activation and were characterized by the increased stability, mitogenic potential and anti-apoptotic activity, as well as induced greater migration responses in normal fibroblasts, as compared to FGF2 monomer. Importantly, biological activity of the dimers was much less dependent on the external heparin administration. Moreover, some dimeric FGF2 variants internalized more efficiently into FGFR overexpressing cancer cells. In summary, in the current work, we showed that preorganization of dimeric FGF2 ligand increased the stability of the growth factor, and therefore, enhanced its biological activity.


Assuntos
Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Mitógenos/farmacologia , Mitose/efeitos dos fármacos , Engenharia de Proteínas/métodos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisteína/química , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Heparina/farmacologia , Humanos , Maleimidas/química , Camundongos , Mitógenos/química , Células NIH 3T3 , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Polietilenoglicóis/química , Multimerização Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
17.
Cell Commun Signal ; 17(1): 65, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208421

RESUMO

Fibroblast growth factor receptors (FGFRs) are integral membrane proteins that transmit signals through the plasma membrane. FGFRs signaling needs to be precisely adjusted as aberrant FGFRs function is associated with development of human cancers or severe metabolic diseases. The subcellular localization, trafficking and function of FGFRs rely on the formation of multiprotein complexes. In this study we revealed galectins, lectin family members implicated in cancer development and progression, as novel FGFR1 binding proteins. We demonstrated that galectin-1 and galectin-3 directly bind to the sugar chains of the glycosylated extracellular part of FGFR1. Although both galectins compete for the same binding sites on FGFR1, these proteins elicit different impact on FGFR1 function and cellular trafficking. Galectin-1 mimics fibroblast growth factor as it efficiently activates FGFR1 and receptor-downstream signaling pathways that result in cell proliferation and apoptotic evasion. In contrast, galectin-3 induces extensive clustering of FGFR1 on the cell surface that inhibits constitutive internalization of FGFR1. Our data point on the interplay between extracellular galectins and FGFRs in the regulation of cell fate.


Assuntos
Espaço Extracelular/metabolismo , Galectinas/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Linhagem Celular Tumoral , Glicosilação , Humanos , Camundongos , Células NIH 3T3 , Ligação Proteica , Transporte Proteico
18.
Mol Pharm ; 16(8): 3588-3599, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31244217

RESUMO

Targeted therapies are rapidly evolving modalities of cancer treatment. The largest group of currently developed biopharmaceuticals is antibody-drug conjugates (ADCs). Here, we developed a new modular strategy for the generation of cytotoxic bioconjugates, containing a homodimer of targeting protein and two highly potent anticancer drugs with distinct mechanisms of action. Instead of antibody, we applied human fibroblast growth factor 2 (FGF2) as a targeting protein. We produced a conjugate of FGF2 with either monomethyl auristatin E (MMAE) or α-amanitin (αAMTN) as a cytotoxic agent and subsequently applied a sortase A-mediated ligation to obtain a dimeric conjugate containing both MMAE and αAMTN. The developed method ensures site-specific conjugation and a controlled drug-to-protein ratio. We validated our approach by demonstrating that dimeric dual warhead conjugate exhibits higher cytotoxic potency against fibroblast growth factor receptor-positive cell lines than single-warhead conjugates. Our modular technology can be applied to other targeting proteins or drugs and thus can be used for preparation of different bioconjugates.


Assuntos
Alfa-Amanitina/química , Antineoplásicos/química , Química Farmacêutica/métodos , Fator 2 de Crescimento de Fibroblastos/química , Neoplasias/tratamento farmacológico , Oligopeptídeos/química , Aminoaciltransferases/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisteína Endopeptidases/química , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , Fator 2 de Crescimento de Fibroblastos/isolamento & purificação , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Humanos , Neoplasias/patologia , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
19.
Int J Mol Sci ; 20(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013829

RESUMO

Mitogen-activated protein kinases (MAPK): Erk1 and Erk2 are key players in negative-feedback regulation of fibroblast growth factor (FGF) signaling. Upon activation, Erk1 and Erk2 directly phosphorylate FGF receptor 1 (FGFR1) at a specific serine residue in the C-terminal part of the receptor, substantially reducing the tyrosine phosphorylation in the receptor kinase domain and its signaling. Similarly, active Erks can also phosphorylate multiple threonine residues in the docking protein FGF receptor substrate 2 (FRS2), a major mediator of FGFR signaling. Here, we demonstrate that in NIH3T3 mouse fibroblasts and human osteosarcoma U2OS cells stably expressing FGFR1, in addition to Erk1 and Erk2, p38 kinase is able to phosphorylate FRS2. Simultaneous inhibition of Erk1/2 and p38 kinase led to a significant change in the phosphorylation pattern of FRS2 that in turn resulted in prolonged tyrosine phosphorylation of FGFR1 and FRS2 and in sustained signaling, as compared to the selective inhibition of Erks. Furthermore, excessive activation of p38 with anisomycin partially compensated the lack of Erks activity. These experiments reveal a novel crosstalk between p38 and Erk1/2 in downregulation of FGF-induced signaling.


Assuntos
Fator 1 de Crescimento de Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Animais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Camundongos , Células NIH 3T3 , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA