Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Plant Dis ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37093167

RESUMO

Lettuce ring necrosis virus (LRNV), genus Ophiovirus, was detected by the Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP) in June and November of 2021 in two samples of chili pepper fruits (Capsicum spp.), both in mixed infection with other viruses. The first sample originated from a production site in Belgium (Sample ID: 40009704) and the second from a production site in the Netherlands (Sample ID: 41115269). One of the fruits of 40009704 showed a light purple circular pattern, while fruits from 41115269 showed colored (ring)spots. The samples were analyzed using Illumina sequencing on a NovaSeq 6000 platform (PE 150) as described previously (Hammond et al., 2021), obtaining 39.9M and 22.8M total reads for 40009704 and 41115269. The corresponding sequence read archives (SRA) were deposited in the NCBI SRA database under BioProject accession number PRJNA917231. From both samples, the nearly complete genome of LRNV (RNA1-4) was obtained and deposited in GenBank (40009704, OQ160823- OQ160826 (7616, 1799, 1502, 1382 nt, mapped reads: 40K, 12K, 114K, 12K , average read coverage (ARC): 0.8K, 0.9K, 11.3K and 1.1K); 41115269, OQ160827- OQ160830 (7616, 1801, 1518, 1389 nt, mapped reads: 112K, 7K, 357K, 55K reads, ARC: 2.2K, 0.6K, 34K and 5.8K)). The shared sequence identities with the Genbank reference sequence of LRNV (NC_006051-NC_006051) were 99.2 and 99.2% (RNA1), 99.1 and 99.1% (RNA2), 98.3 and 98.8% (RNA3), 99.0 and 98.9% (RNA4) for 40009704 and 41115269 respectively. The shared sequence identities between 40009704 and 41115269 were 99.9 (RNA1), 99.0 (RNA2), 99.1 (RNA3) and 99.5% (RNA4). In addition to LRNV, the ophiovirus ranunculus white mottle virus (RWMV) was detected in both samples (OQ160831-OQ160834; OQ160835-OQ160838), while the tobamovirus pepper mild mottle virus (PMMoV) was present in the fruits of 41115269 (OQ160839). Since RWMV has been associated with leaf symptoms in pepper (Gambley et al., 2019; Rivarez et al., 2022) and the colored (ring)spots of 41115269 were very similar to reported symptoms of PMMoV-infected pepper fruits (Martínez-Ochoa et al., 2003), it remains unclear whether LRNV contributed to the observed symptoms. Additionally, LRNV was detected in tomato (Solanum lycopersicum) in Belgium in 2020. In the frame of a metagenomic survey using Virion-Associated Nucleic Acids (VANA)-based protocol (Maclot et al., 2021) on a Nextseq 500 platform (PE 150), partial genome sequences of LRNV were detected in two pools of tomato plants. One pool was made of 44 asymptomatic cultivars from a non-commercial grower (one sample per cultivar) yielding 118K total reads of which 84, 59, 335, and 18 reads mapped on RNA1, 2, 3, and 4, covering 35%, 69%, 100% and 55% of the genome, respectively. The other pool consisted of 15 plants from one cultivar from a production site yielding 3.1M total reads of which 6 and 5 reads mapped on RNA3 and 4, respectively. The detection of LRNV was confirmed for both pooled samples using the real-time RT-PCR method, targeting the CP gene, as described by Maachi et al. (2021). To our knowledge this is the first report of LRNV in pepper anywhere in the world. Additionally, although the disease lettuce ring necrosis in lettuce (Lactuca sativa) has been described in Belgium and the Netherlands before the causal agent was identified (Bos & Huijberts, 1996), this is the first official report of this virus in Belgium and the Netherlands. This publication resulted from pre-publication data sharing of sequences and biological data among plant virologists to provide more context to two independent findings (Hammond et al., 2021).

2.
Mol Biol Evol ; 34(8): 2035-2040, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472380

RESUMO

Plants can show long-term effects of environmental stresses and in some cases a stress "memory" has been reported to persist across generations, potentially mediated by epigenetic mechanisms. However, few documented cases exist of transgenerational effects that persist for multiple generations and it remains unclear if or how epigenetic mechanisms are involved. Here, we show that the composition of small regulatory RNAs in apomictic dandelion lineages reveals a footprint of drought stress and salicylic acid treatment experienced two generations ago. Overall proportions of 21 and 24 nt RNA pools were shifted due to grandparental treatments. While individual genes did not show strong up- or downregulation of associated sRNAs, the subset of genes that showed the strongest shifts in sRNA abundance was significantly enriched for several GO terms including stress-specific functions. This suggests that a stress-induced signal was transmitted across multiple unexposed generations leading to persistent changes in epigenetic gene regulation.


Assuntos
Pequeno RNA não Traduzido/química , Taraxacum/genética , Apomixia , Efeito de Coortes , Metilação de DNA , Secas , Meio Ambiente , Epigênese Genética/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA , Pequeno RNA não Traduzido/genética , Ácido Salicílico/metabolismo , Estresse Fisiológico/genética
3.
New Phytol ; 217(2): 871-882, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29034954

RESUMO

Parental environments can influence offspring traits. However, the magnitude of the impact of parental environments on offspring molecular phenotypes is poorly understood. Here, we test the direct effects and intergenerational effects of jasmonic acid (JA) treatment, which is involved in herbivory-induced defense signaling, on transcriptomes and metabolomes in apomictic common dandelion (Taraxacum officinale). In a full factorial crossed design with parental and offspring JA and control treatments, we performed leaf RNA-seq gene expression analysis, LC-MS metabolomics and total phenolics assays in offspring plants. Expression analysis, leveraged by a de novo assembled transcriptome, revealed an induced response to JA exposure that is consistent with known JA effects. The intergenerational effect of treatment was considerable: 307 of 858 detected JA-responsive transcripts were affected by parental JA treatment. In terms of the numbers of metabolites affected, the magnitude of the chemical response to parental JA exposure was c. 10% of the direct JA treatment response. Transcriptome and metabolome analyses both identified the phosphatidylinositol signaling pathway as a target of intergenerational JA effects. Our results highlight that parental environments can have substantial effects in offspring generations. Transcriptome and metabolome assays provide a basis for zooming in on the potential mechanisms of inherited JA effects.


Assuntos
Apomixia/genética , Ciclopentanos/farmacologia , Meio Ambiente , Metaboloma/genética , Oxilipinas/farmacologia , Taraxacum/genética , Taraxacum/metabolismo , Transcriptoma/genética , Apomixia/efeitos dos fármacos , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Metaboloma/efeitos dos fármacos , Metabolômica , Fenóis/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Taraxacum/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
4.
BMC Genomics ; 17: 203, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26956152

RESUMO

BACKGROUND: Asexual reproduction has the potential to enhance deleterious mutation accumulation and to constrain adaptive evolution. One source of mutations that can be especially relevant in recent asexuals is activity of transposable elements (TEs), which may have experienced selection for high transposition rates in sexual ancestor populations. Predictions of genomic divergence under asexual reproduction therefore likely include a large contribution of transposable elements but limited adaptive divergence. For plants empirical insight into genome divergence under asexual reproduction remains limited. Here, we characterize expression divergence between clone members of a single apomictic lineage of the common dandelion (Taraxacum officinale) to contribute to our knowledge of genome evolution under asexuality. RESULTS: Using RNA-Seq, we show that about one third of heritable divergence within the apomictic lineage is driven by TEs and TE-related gene activity. In addition, we identify non-random transcriptional differences in pathways related to acyl-lipid and abscisic acid metabolisms which might reflect functional divergence within the apomictic lineage. We analyze SNPs in the transcriptome to assess genetic divergence between the apomictic clone members and reveal that heritable expression differences between the accessions are not explained simply by genome-wide genetic divergence. CONCLUSION: The present study depicts a first effort towards a more complete understanding of apomictic plant genome evolution. We identify abundant TE activity and ecologically relevant functional genes and pathways affecting heritable within-lineage expression divergence. These findings offer valuable resources for future work looking at epigenetic silencing and Cis-regulation of gene expression with particular emphasis on the effects of TE activity on asexual species' genome.


Assuntos
Evolução Molecular , Taraxacum/genética , Transcriptoma , República Tcheca , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Genética Populacional , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , RNA de Plantas/genética , Reprodução Assexuada/genética , Análise de Sequência de RNA
5.
Mol Ecol ; 25(8): 1759-68, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26615058

RESUMO

Epigenetic variation has been proposed to contribute to the success of asexual plants, either as a contributor to phenotypic plasticity or by enabling transient adaptation via selection on transgenerationally stable, but reversible, epialleles. While recent studies in experimental plant populations have shown the potential for epigenetic mechanisms to contribute to adaptive phenotypes, it remains unknown whether heritable variation in ecologically relevant traits is at least partially epigenetically determined in natural populations. Here, we tested the hypothesis that DNA methylation variation contributes to heritable differences in flowering time within a single widespread apomictic clonal lineage of the common dandelion (Taraxacum officinale s. lat.). Apomictic clone members of the same apomictic lineage collected from different field sites showed heritable differences in flowering time, which was correlated with inherited differences in methylation-sensitive AFLP marker profiles. Differences in flowering between apomictic clone members were significantly reduced after in vivo demethylation using the DNA methyltransferase inhibitor zebularine. This synchronization of flowering times suggests that flowering time divergence within an apomictic lineage was mediated by differences in DNA methylation. While the underlying basis of the methylation polymorphism at functional flowering time-affecting loci remains to be demonstrated, our study shows that epigenetic variation contributes to heritable phenotypic divergence in ecologically relevant traits in natural plant populations. This result also suggests that epigenetic mechanisms can facilitate adaptive divergence within genetically uniform asexual lineages.


Assuntos
Metilação de DNA , Epigênese Genética , Flores/fisiologia , Taraxacum/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , República Tcheca , Finlândia , Genética Populacional , Alemanha , Repetições de Microssatélites , Reprodução Assexuada , Taraxacum/fisiologia
6.
Plant Physiol ; 168(2): 735-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25911529

RESUMO

Plants alter their development in response to changes in their environment. This responsiveness has proven to be a successful evolutionary trait. Here, we tested the hypothesis that two key environmental factors, light and nutrition, are integrated within the axillary bud to promote or suppress the growth of the bud into a branch. Using petunia (Petunia hybrida) as a model for vegetative branching, we manipulated both light quality (as crowding and the red-to-far-red light ratio) and phosphate availability, such that the axillary bud at node 7 varied from deeply dormant to rapidly growing. In conjunction with the phenotypic characterization, we also monitored the state of the strigolactone (SL) pathway by quantifying SL-related gene transcripts. Mutants in the SL pathway inhibit but do not abolish the branching response to these environmental signals, and neither signal is dominant over the other, suggesting that the regulation of branching in response to the environment is complex. We have isolated three new putatively SL-related TCP (for Teosinte branched1, Cycloidia, and Proliferating cell factor) genes from petunia, and have identified that these TCP-type transcription factors may have roles in the SL signaling pathway both before and after the reception of the SL signal at the bud. We show that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance. This suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal.


Assuntos
Meio Ambiente , Morfogênese , Petunia/crescimento & desenvolvimento , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Vias Biossintéticas/efeitos da radiação , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Luz , Dados de Sequência Molecular , Morfogênese/efeitos dos fármacos , Morfogênese/efeitos da radiação , Petunia/efeitos dos fármacos , Petunia/genética , Petunia/efeitos da radiação , Fósforo/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/efeitos da radiação , Análise de Componente Principal , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/metabolismo
7.
Front Plant Sci ; 14: 1198909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457342

RESUMO

The Asteraceae is the largest angiosperm family with more than 25,000 species. Individual studies have shown that MADS-box and TCP transcription factors are regulators of the development and symmetry of flowers, contributing to their iconic flower-head (capitulum) and floret. However, a systematic study of MADS-box and TCP genes across the Asteraceae is lacking. We performed a comparative analysis of genome sequences of 33 angiosperm species including our de novo assembly of diploid sexual dandelion (Taraxacum officinale) and 11 other Asteraceae to investigate the lineage-specific evolution of MADS-box and TCP genes in the Asteraceae. We compared the phylogenomic results of MADS-box and TCP genes with their expression in T. officinale floral tissues at different developmental stages to demonstrate the regulation of genes with Asteraceae-specific attributes. Here, we show that MADS-box MIKC c and TCP-CYCLOIDEA (CYC) genes have expanded in the Asteraceae. The phylogenomic analysis identified AGAMOUS-like (AG-like: SEEDSTICK [STK]-like), SEPALATA-like (SEP3-like), and TCP-PROLIFERATING CELL FACTOR (PCF)-like copies with lineage-specific genomic contexts in the Asteraceae, Cichorioideae, or dandelion. Different expression patterns of some of these gene copies suggest functional divergence. We also confirm the presence and revisit the evolutionary history of previously named "Asteraceae-Specific MADS-box genes (AS-MADS)." Specifically, we identify non-Asteraceae homologs, indicating a more ancient origin of this gene clade. Syntenic relationships support that AS-MADS is paralogous to FLOWERING LOCUS C (FLC) as demonstrated by the shared ancient duplication of FLC and SEP3.

8.
Nat Genet ; 54(1): 84-93, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34992267

RESUMO

Apomixis, the clonal formation of seeds, is a rare yet widely distributed trait in flowering plants. We have isolated the PARTHENOGENESIS (PAR) gene from apomictic dandelion that triggers embryo development in unfertilized egg cells. PAR encodes a K2-2 zinc finger, EAR-domain protein. Unlike the recessive sexual alleles, the dominant PAR allele is expressed in egg cells and has a miniature inverted-repeat transposable element (MITE) transposon insertion in the promoter. The MITE-containing promoter can invoke a homologous gene from sexual lettuce to complement dandelion LOSS OF PARTHENOGENESIS mutants. A similar MITE is also present in the promoter of the PAR gene in apomictic forms of hawkweed, suggesting a case of parallel evolution. Heterologous expression of dandelion PAR in lettuce egg cells induced haploid embryo-like structures in the absence of fertilization. Sexual PAR alleles are expressed in pollen, suggesting that the gene product releases a block on embryogenesis after fertilization in sexual species while in apomictic species PAR expression triggers embryogenesis in the absence of fertilization.


Assuntos
Apomixia/genética , Divisão Celular/genética , Genes de Plantas , Lactuca/genética , Taraxacum/genética , Alelos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Lactuca/crescimento & desenvolvimento , Óvulo/citologia , Transcriptoma , Dedos de Zinco/genética
9.
EFSA J ; 18(1): e05852, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626476

RESUMO

The European Commission requested a pest categorisation of the non-EU viruses and viroids of potato (hereafter referred to as viruses). As a first step, a systematic literature and database search was carried out to identify the viruses reported to naturally infect Solanum tuberosum and other tuber-forming Solanum spp (hereafter referred to as potato). Based on the global distribution and on the prevalence inside the European Union (EU), the Panel identified 40 non-EU viruses known to occur only outside the EU or with only a limited presence in the EU (reported in only one or few Member States (MSs) and/or with restricted distribution, outbreaks). Twenty-seven viruses were identified as having a significant presence in the EU (known to occur in several MSs, frequently reported in the EU, widespread in several MSs) or reported only from the EU so far, and will be excluded from further categorisation in the frame of the present mandate. Five viruses remained with an undetermined standing because the available information did not allow their allocation to one of the above groups. The viruses considered non-EU and those with undetermined standing will be further categorised if not addressed by EFSA in previous scientific opinions. Seven viruses for which non-European isolates are specifically regulated in Annex I of directive 2000/29/EC will be categorised separately. The main knowledge gaps and uncertainties of this grouping concern the natural host status of potato, the taxonomy, and/or information on the geographical distribution and prevalence of some of the analysed viruses.

10.
EFSA J ; 18(1): e05853, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626477

RESUMO

Following a request from the EU Commission, the Panel on Plant Health has addressed the pest categorisation of those viruses and viroids (hereafter referred to as viruses) of Solanum tuberosum and other tuber-forming Solanum spp. (hereafter referred to as potato) which are considered to be either non-EU or of undetermined standing based on a previous EFSA opinion. These viruses belong to different families and genera and either have an established identity or produce consistent symptoms. Plants for planting is the main pathway for entry for all categorised viruses as they can all be transmitted by vegetative propagation. Several categorised viruses have a relatively wide host range and/or are vector-transmitted, increasing the potential for entry. The information currently available on geographical distribution, biology, epidemiology, impact and potential entry pathways has been evaluated with regard to the criteria to qualify as potential Union quarantine pest or as Union regulated non-quarantine pest (RNQP). Since this opinion addresses specifically the non-EU potato viruses, in general these viruses do not meet the criteria assessed by EFSA to qualify as potential Union regulated non-quarantine pests. The following viruses meet the criteria to qualify as potential Union quarantine pest: APLV, APMMV, APMoV, ChiLCV, CYSDV, PAMV, PBRSV, PVH, PVP, PVT, PYDV, PYMV, PYV, PYVV, RCVMV, SALCV, SB26/29, ToCV, ToLCNDV, ToMHaV, ToMoTV, ToSRV and ToYVSV. With the exception of the criterion regarding the potential for consequences in the EU territory, for which the Panel is unable to conclude because of lack of information, AVB, CPSbV, PaLCrV, PapMV, PVB, PVU, SB41 and TVBMV meet all the other criteria to qualify as potential Union quarantine pest. PotLV and WPMV do not qualify as potential Union quarantine pest, since they are not reported to have any impact. For most of the categorised viruses, the conclusions of the Panel have inherent uncertainties, due to the lack of quantitative data on their impact and/or absence or limited availability of information on the biology, epidemiology and geographical distribution.

11.
EFSA J ; 18(1): e05854, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626478

RESUMO

Following a request from the EU Commission, the Panel on Plant Health has addressed the pest categorisation of non-EU isolates of potato virus M (PVM). The information currently available on geographical distribution, biology, epidemiology, potential entry pathways, potential additional impact compared to the current situation in the EU and availability of control measures of non-EU isolates of PVM has been evaluated with regard to the criteria to qualify as a potential Union quarantine pest. Because non-EU isolates of PVM are absent from the EU, they do not meet one of the requirements to be regulated as a regulated non-quarantine pest (RNQP) (presence in the EU); as a consequence, the Panel decided not to evaluate the other RNQP criteria for these isolates. Populations of PVM can be subdivided into two strains: the ordinary strain (PVM-O) is present in the EU, while the divergent strain (PVM-D) is absent from the EU or considered to have at most a limited distribution in the EU. Non-EU isolates of PVM-O are not expected to have an additional impact in the EU compared to EU isolates and therefore do not meet the corresponding criterion to qualify as a potential Union quarantine pest. The Panel is unable to conclude on the potential impact of non-EU PVM-D isolates in the EU territory, but PVM-D isolates meet all the other criteria to qualify as a potential Union quarantine pest.

12.
EFSA J ; 18(1): e05855, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626479

RESUMO

Following a request from the EU Commission, the Panel on Plant Health has addressed the pest categorisation of non-EU isolates of potato virus S (PVS). The information currently available on geographical distribution, biology, epidemiology, potential entry pathways, potential additional impact compared to the current situation in the EU, and availability of control measures of non-EU isolates of PVS has been evaluated with regard to the criteria to qualify as potential Union quarantine pest. Because non-EU isolates of PVS are absent from the EU, they do not meet one of the requirements to be regulated as an RNQP (presence in the EU); as a consequence, the Panel decided not to evaluate the other RNQP criteria for these isolates. Populations of PVS can be subdivided into two strains: the ordinary strain (PVS-O) with a worldwide distribution (including the EU), and the Andean strain (PVS-A) which is absent from the EU or considered to have at most a limited distribution in the EU. Two additional divergent isolates (PVS-A/PVS-O recombinants and PVS-arracacha) have also been categorised. Non-EU isolates of PVS-A are expected to have an additional impact as compared to the PVS isolates currently present in the EU, and therefore meet all the criteria to qualify as potential Union quarantine pests; the magnitude of the additional impact is, however, unknown. Non-EU isolates of PVS-A/PVS-O recombinants and of PVS-arracacha also meet these criteria, with the exception of the criterion regarding the potential additional consequences in the EU territory for which the Panel was unable to conclude. Non-EU PVS-O isolates are not expected to have an additional impact in the EU as compared to EU isolates and therefore do not meet the corresponding criterion.

13.
EFSA J ; 18(1): e05935, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626489

RESUMO

Following a request from the EU Commission, the Panel on Plant Health has addressed the pest categorisation of non-EU isolates of potato virus A (PVA). The information currently available on geographical distribution, biology, epidemiology, potential entry pathways, potential additional impact over the current situation and availability of control measures of non-EU isolates of PVA has been evaluated with regard to the criteria to qualify as potential Union quarantine pest. Because non-EU isolates of PVA are absent from the EU, they do not meet one of the requirements to be regulated as a regulated non-quarantine pest (RNQP) (presence in the EU); as a consequence, the Panel decided not to evaluate the other RNQP criteria for these isolates. This categorisation was performed considering two groups of isolates: those reported in Solanum betaceum (PVA-TamMV, not reported from the EU) and all other isolates (hereafter referred to as PVA, worldwide distribution). Non-EU isolates of PVA and of PVA-TamMV do not meet one of the criteria evaluated by EFSA to be regarded as a potential Union quarantine pest, since they are not expected to have an additional impact in the EU.

14.
EFSA J ; 18(1): e05936, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626490

RESUMO

Following a request from the EU Commission, the Panel on Plant Health has addressed the pest categorisation of non-EU isolates of potato virus V (PVV). The information currently available on geographical distribution, biology, epidemiology, potential entry pathways, potential additional impact and availability of control measures of non-EU isolates of PVV has been evaluated with regard to the criteria to qualify as a potential Union quarantine pest. Because non-EU isolates of PVV are absent from the EU, they do not meet one of the requirements to be regulated as a regulated non-quarantine pest (RNQP) (presence in the EU); as a consequence, the Panel decided not to evaluate the other RNQP criteria for these isolates. This categorisation was performed considering two lineages, PVV-I (present in and outside the EU) and PVV-II (not reported in the EU), and isolate PVV-PA4 (unknown distribution). Non-EU isolates of PVV-I and PVV-PA4 do not meet one of the criteria evaluated by EFSA to be regarded as a potential Union quarantine pest, since they are not expected to have an additional impact in the EU. With the exception of the criterion regarding the potential consequences in the EU territory, for which the Panel is unable to conclude, non-EU isolates of PVV-II meet all the other criteria to qualify as a potential Union quarantine pest.

15.
EFSA J ; 18(1): e05937, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626491

RESUMO

Following a request from the EU Commission, the Panel on Plant Health has addressed the pest categorisation of non-EU isolates of potato virus X (PVX). The information currently available on geographical distribution, biology, epidemiology, potential entry pathways, potential additional impact and availability of control measures of non-EU isolates of PVX has been evaluated with regard to the criteria to qualify as a potential Union quarantine pest. Because non-EU isolates of PVX are absent from the EU, they do not meet one of the requirements to be regulated as a regulated non-quarantine pest (RNQP) (presence in the EU); as a consequence, the Panel decided not to evaluate the other RNQP criteria for these isolates. On the basis of their ability to overcome potato resistance genes, PVX isolates can be divided into several pathotypes. PVX isolates that are not able to overcome resistance genes and PVX isolates that are able to overcome the Nb and/or Nx resistance genes are already present in the EU. Isolates able to overcome the Rx resistance gene have only been reported from South America. These Rx breaking isolates could potentially have an additional impact over the current situation in the EU and therefore meet all the criteria to qualify as a potential Union quarantine pest. All other non-EU isolates, should they be introduced, are not expected to have additional impact and therefore do not meet this criterion to qualify as a potential Union quarantine pest.

16.
EFSA J ; 18(1): e05938, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626492

RESUMO

Following a request from the EU Commission, the Panel on Plant Health has addressed the pest categorisation of non-EU isolates of potato virus Y (PVY). The information currently available on geographical distribution, biology, epidemiology, potential entry pathways and potential additional impact of non-EU isolates of PVY, has been evaluated with regard to the criteria to qualify as a potential Union quarantine pest. Because non-EU isolates of PVY are absent from the EU, they do not meet one of the requirements to be regulated as a regulated non-quarantine pest (RNQP) (presence in the EU); as a consequence, the Panel decided not to evaluate the other RNQP criteria for these isolates. Populations of PVY can be subdivided into several strains and groups of isolates: strain C (PVY-C), strain N (PVY-N), strain O (PVY-O) and a wide range of recombinant isolates (PVY-recombinants) which have a worldwide distribution (including the EU). Two groups of isolates, i.e. the Brazilian (PVY-Br) and Chilean (PVY-Ch) isolates, are considered absent from the EU. Non-EU isolates of PVY-C, PVY-N, PVY-O and PVY-recombinants identified so far are not expected to have an additional impact in the EU compared to the PVY isolates already present and, therefore, do not meet the corresponding criterion to qualify as a potential Union quarantine pest. The Panel is unable to conclude on the potential additional impact of isolates of PVY-Br and PVY-Ch in the EU territory, but these isolates meet all the other criteria to qualify as potential Union quarantine pests.

17.
EFSA J ; 18(1): e05939, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626493

RESUMO

Following a request from the EU Commission, the Panel on Plant Health has addressed the pest categorisation of non-EU isolates of potato leafroll virus (PLRV). The information currently available on geographical distribution, biology, epidemiology, potential entry pathways, potential additional impact and availability of control measures of non-EU isolates of PLRV has been evaluated with regard to the criteria to qualify as a potential Union quarantine pest. Because non-EU isolates of PLRV are absent from the EU, they do not meet one of the requirements to be regulated as a regulated non-quarantine pest (RNQP) (presence in the EU); as a consequence, the Panel decided not to evaluate the other RNQP criteria for these isolates. This categorisation was performed considering two groups of PLRV isolates: those associated with the tomato yellow top disease (PLRV-TYTV), not reported from the EU, and all other isolates (hereafter referred to as PLRV), with a worldwide distribution. Isolates of PLRV-TYTV could potentially have an additional impact over the current situation in the EU and therefore meet all the criteria to qualify as a potential Union quarantine pest. All other non-EU PLRV isolates, should they be introduced, are not expected to have additional impact and therefore do not meet this criterion to qualify as a potential Union quarantine pest.

18.
Planta ; 229(6): 1335-46, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19322584

RESUMO

Although the hormones, gibberellin and auxin, are known to play a role in the initiation of fruits, no such function has yet been demonstrated for abscisic acid (ABA). However, ABA signaling and ABA responses are high in tomato (Solanum lycopersicum L.) ovaries before pollination and decrease thereafter (Vriezen et al. in New Phytol 177:60-76, 2008). As a first step to understanding the role of ABA in ovary development and fruit set in tomato, we analyzed ABA content and the expression of genes involved in its metabolism in relation to pollination. We show that ABA levels are relatively high in mature ovaries and decrease directly after pollination, while an increase in the ABA metabolite dihydrophaseic acid was measured. An important regulator of ABA biosynthesis in tomato is 9-cis-epoxy-carotenoid dioxygenase (LeNCED1), whose mRNA level in ovaries is reduced after pollination. The increased catabolism is likely caused by strong induction of one of four newly identified putative (+)ABA 8'-hydroxylase genes. This gene was named SlCYP707A1 and is expressed specifically in ovules and placenta. Transgenic plants, overexpressing SlCYP707A1, have reduced ABA levels and exhibit ABA-deficient phenotypes suggesting that this gene encodes a functional ABA 8'-hydroxylase. Gibberellin and auxin application have different effects on the LeNCED1 and SlCYP707A1 gene expression. The crosstalk between auxins, gibberellins and ABA during fruit set is discussed.


Assuntos
Ácido Abscísico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/metabolismo , Oxigenases/metabolismo , Solanum lycopersicum/metabolismo , Ácido Abscísico/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Dioxigenases , Flores/enzimologia , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hibridização In Situ , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/genética , Oxigenases/classificação , Oxigenases/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas , Polinização/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Xantonas/farmacologia
19.
Ecol Evol ; 8(5): 3047-3059, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29531716

RESUMO

DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced transgenerational DNA methylation changes are and if they persist for more than one offspring generation. We exposed multiple accessions of two different apomictic dandelion lineages of the Taraxacum officinale group (Taraxacum alatum and T. hemicyclum) to drought and salicylic acid (SA) treatment. Using methylation-sensitive amplified fragment length polymorphism markers (MS-AFLPs) we screened anonymous methylation changes at CCGG restriction sites throughout the genome after stress treatments and assessed the heritability of induced changes for two subsequent unexposed offspring generations. Irrespective of the initial stress treatment, a clear buildup of heritable DNA methylation variation was observed across three generations, indicating a considerable background rate of heritable epimutations. Less evidence was detected for environmental effects. Drought stress showed some evidence for accession-specific methylation changes, but only in the exposed generation and not in their offspring. By contrast, SA treatment caused an increased rate of methylation change in offspring of treated plants. These changes were seemingly undirected resulting in increased transgenerational epigenetic variation between offspring individuals, but not in predictable epigenetic variants. While the functional consequences of these MS-AFLP-detected DNA methylation changes remain to be demonstrated, our study shows that (1) stress-induced transgenerational DNA methylation modification in dandelions is genotype and context-specific; and (2) inherited environmental DNA methylation effects are mostly undirected and not targeted to specific loci.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA