Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 105: 104340, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096308

RESUMO

The treatment of diseases is under threat due to the increasing resistance of disease-causing bacteria to antibiotics. Likewise, free radical-induced oxidative stress has been implicated in several human disease conditions, such as cancer, stroke and diabetes. In the search for amino acid analogues with antibacterial and antioxidant properties as possible mimics of antimicrobial peptides, substituted N-(2'-nitrophenyl)pyrrolidine-2-carboxamides 4a-4k and N-(2'-nitrophenyl)piperidine-2-carboxamides 4l-4n have been synthesized via a two-step, one-pot amidation of the corresponding acids, using thionyl chloride with different amines in dichloromethane. The carboxamides were characterized by infrared and nuclear magnetic resonance spectroscopy, mass spectrometry and elemental analysis. Carboxamides 4a-4n were assayed against five Gram-positive and five Gram-negative bacterial strains using the broth micro-dilution procedure and compared to standard antibiotic drugs (streptomycin and nalidixic acid). 4b showed the highest antibacterial activity with a minimum inhibitory concentration (MIC) value of 15.6 µg/mL against Staphylococcus aureus. Pertinently, 4b and 4k are promising candidates for narrow-spectrum (Gram-positive) and broad-spectrum antibiotics, respectively. The antioxidant properties of the carboxamides were also evaluated using the 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical cation. 4a and 4k recorded the lowest IC50 values of 1.22 × 10-3 mg/mL (with DPPH) and 1.45 × 10-4 mg/mL (with ABTS), respectively. Notably, 4k recorded about 2.5 times better antioxidant capacity than the positive controls - ascorbic acid and butylated hydroxyanisole. These results bode well for N-aryl carboxamides as good mimics and substitutes for antimicrobial peptides towards mitigating bacterial resistance to antibiotics as well as ameliorating oxidative stress-related diseases.


Assuntos
Antibacterianos/química , Antioxidantes/síntese química , Proteínas Citotóxicas Formadoras de Poros/síntese química , Prolina/química , Pirrolidinas/síntese química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Hidroxianisol Butilado/farmacologia , Desenho de Fármacos , Humanos , Testes de Sensibilidade Microbiana , Ácido Nalidíxico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Pirrolidinas/farmacologia , Estreptomicina/farmacologia , Relação Estrutura-Atividade
2.
Trop Anim Health Prod ; 51(8): 2567-2574, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31250251

RESUMO

The objective of the study was to investigate the effect of stocking density and extract from Cassia abbreviata stem bark on growth performance, oxidative stress and liver function of indigenous chickens. A total of 420 1-day-old female Ovambo chicks with initial body weight of 0.32 ± 0.036 kg (mean ± SD) were used in the study. Birds, which were cooped in stocking densities consisting 5, 10 and 20 birds/m2, were orally administered with 0, 50, 200 and 500 mg/kg of extract from C. abbreviata stem bark. Each stocking density per dosage level of extract was repeated three times. Average feed intake was lower (P < 0.05) in birds housed at 20 birds/m2. There was a low (P < 0.05) average daily gain in birds housed at 20 birds/m2. Malondialdehyde was higher (P < 0.05) in 20 birds/m2. Average daily gain was high (P < 0.05) in birds administered with 0 and 50 mg/kg of C. abbreviata stem bark extract. Birds administered with 0 and 50 mg/kg of C. abbreviata stem bark extract had a higher (P < 0.05) gain to feed ratio. Birds dosed with 500 and 200 mg/kg had high (P < 0.05) superoxide dismutase activity. Birds administered with 500 mg/kg of C. abbreviata stem bark extract had the lowest (P < 0.05) malondialdehyde. A 500 mg/kg of stem bark extract from C. abbreviata resulted to higher (P < 0.05) activities of aspartate transaminase and alanine transaminase. There was a significant (P < 0.05) interaction between the stocking density and C. abbreviata extract on catalase activity. High stocking density of 20 birds/m2 reduced growth performance and induced stress in indigenous chickens. High dosage of level 500 mg/kg of stem bark extract of C. abbreviata reduced oxidative stress while depressing growth performance and causing hepatotoxicity in birds. There is a need to precisely determine the maximum dosage level of C. abbreviata extract to improve growth performance and reduce oxidative stress and hepatotoxicity in indigenous chickens in high stocking density.


Assuntos
Cassia/química , Galinhas/fisiologia , Abrigo para Animais , Fígado/efeitos dos fármacos , Estresse Oxidativo , Extratos Vegetais/metabolismo , Animais , Galinhas/crescimento & desenvolvimento , Feminino , Fígado/fisiologia , Casca de Planta/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Caules de Planta/química , Densidade Demográfica , Distribuição Aleatória , África do Sul
3.
Antioxidants (Basel) ; 13(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790713

RESUMO

Cyanobacteria in recent times have been touted to be a suitable source for the discovery of novel compounds, including antioxidants and antibiotics, due to their large arsenal of metabolites. This study presents the in vitro antioxidant and in silico evaluation of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881, isolated from freshwater ponds around the campus of the University of Zululand, South Africa. The isolates were confirmed using 16S rRNA. Various crude extracts of the isolated microbes were prepared through sequential extraction using hexane, dichloromethane, and 70% ethanol. The chemical constituents of the crude extracts were elucidated by FTIR and GC-MS spectroscopy. The antioxidant potential of the extracts was determined by the free radical (DPPH, ABTS, •OH, and Fe2+) systems. Molecular docking of the major constituents of the extracts against ß-lactamase was also evaluated. GC-MS analysis indicated the dominating presence of n-alkanes. The extracts exhibited varying degrees of antioxidant activity (scavenging of free radicals; an IC50 range of 8-10 µg/mL was obtained for ABTS). A good binding affinity (-6.6, -6.3 Kcal/mol) of some the organic chemicals (diglycerol tetranitrate, and 2,2-dimethyl-5-(3-methyl-2-oxiranyl)cyclohexanone) was obtained following molecular docking. The evaluated antioxidant activities, coupled with the obtained docking score, potentiates the antimicrobial activity of the extracts.

4.
Pol J Microbiol ; 72(2): 117-124, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37218281

RESUMO

Lignin recalcitrance is a key issue in producing value-added products from lignocellulose biomass. In situ biodegradable lignin-modifying enzymes-producing bacteria are considered a suitable solution to lignin biodegradation problems, but exploitation of ligninolytic bacteria is still limited to date. Hence, this study aimed to isolate and characterize potential lignin peroxidase ligninolytic bacteria from decomposing soil, sawdust, and cow dung at Richard Bay, South Africa. The samples were collected and cultured in the lignin-enriched medium. Pure isolated colonies were characterized through 16S rRNA gene sequencing. The ability of the isolates to grow and utilize aromatic monomers (veratryl and guaiacol alcohol) and decolorize lignin-like dyes (Azure B, Congo Red, Remazol Brilliant Blue R) was evaluated. Of the twenty-six (26) bacteria isolates 10 isolates, including Pseudomonas spp. (88%), Enterobacter spp. (8%), and Escherichia coli (4%) were identified as true lignin peroxidase producers. Pseudomonas aeruginosa (CP031449.2) and E. coli (LR025096.1) exhibited the highest ligninolytic activities. These isolates could potentially be exploited in the industry and wastewater treatment as effective lignin degrading agents.


Assuntos
Compostagem , Lignina , Lignina/metabolismo , RNA Ribossômico 16S/genética , África do Sul , Baías , Escherichia coli/genética , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental
5.
ACS Omega ; 8(34): 30906-30916, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663489

RESUMO

The increasing incidence of hypercholesterolemia-related diseases even in the presence of the currently available cholesterol-lowering drugs indicates a need to discover new therapeutic drugs. This study aimed to investigate the hypocholesterolemic potential of two triterpenoids isolated from Protorhus longifolia stem bark. In silico techniques and in vitro enzyme assays were used to evaluate the potential inhibition of cholesterol esterase and HMG-CoA reductase by the triterpenoids (ARM-2 and RA-5). The toxicity, modulation of low-density lipoprotein (LDL) uptake, and associated gene expression were determined in HepG2 hepatocytes. In silico molecular docking revealed that ARM-2 compared with RA-5 has a relatively stronger binding affinity for both enzymes. Both triterpenoids further demonstrated promising in silico drug-likeness properties and favorable ADMET profiles characterized by high intestinal absorption and lack of CYP450 enzyme inhibition. The compounds further showed, to varying degrees of efficacy, inhibition of cholesterol micellization as well as both cholesterol esterase and HMG-CoA reductase activities with IC50 values ranging from 16.4 to 41.1 µM. Moreover, enhanced hepatic cellular LDL uptake and the associated upregulation of the LDL-R and SREBP-2 gene expression were observed in the triterpenoid-treated HepG2 cells. It is evident that the triterpenoids, especially ARM-2, possess hypocholesterolemic properties, and these molecules can serve as leads or structural templates for the development of new hypocholesterolemic drugs.

6.
Food Sci Nutr ; 5(1): 139-147, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28070325

RESUMO

The use of plant-derived foods in the prevention, treatment, and management of metabolic diseases especially diabetes has gained prominence; this has been associated with their physicochemical properties. This study was conducted to compare the proximate, functional, mineral, and antinutrient composition of the fermented seeds, the defatted seeds, and the protein isolate from Parkia biglobosa seeds. The results showed that the fermented, defatted, and protein isolate varied in composition within the parameters studied. The proximate analysis revealed that the protein isolate had the highest ash (6.0%) and protein (59.4%) as well as the lowest fat (5.7%) and moisture (5.1%) content when compared to the fermented and defatted samples. In like manner, the functional properties of the protein isolate were relatively better than those of the fermented and defatted samples, with oil absorption capacity of 4.2% and emulsion capacity of 82%. The magnesium and zinc content of the protein isolate were significantly higher when compared with the fermented and defatted samples, while a negligible amount of antinutrient was present in all the samples, with the protein isolate having the lowest quantity. The overall data suggest that the protein isolate had better proximate, mineral, functional, and antinutrient properties when compared to the fermented and defatted samples. Therefore, the synergistic effect of all these components present in the protein isolate from P. biglobosa seed in association with its low carbohydrate and high protein/ash contents could play a vital role in the management of diabetes and its associated complications.

7.
Mol Nutr Food Res ; 59(11): 2199-208, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26310822

RESUMO

SCOPE: Saturated-free fatty acids, such as palmitate, are associated with insulin resistance. This study aimed to establish if an aspalathin-enriched green rooibos extract (GRE) and, its major flavanoid, aspalathin (ASP) could contribute significantly to the amelioration of experimentally induced insulin resistance in 3T3-L1 adipocytes. METHODS AND RESULTS: 3T3-L1 adipocytes were cultured in DMEM containing 0.75 mM palmitate for 16 h to induce insulin resistance before treatment for 3 h with GRE (10 µg/mL) or ASP (10 µM). GRE and ASP reversed the palmitate-induced insulin resistance. At a protein level GRE and ASP suppressed nuclear factor kappa beta (NF-κB), insulin receptor substrate one (serine 307) (IRS1 (Ser (307) )) and AMP-activated protein kinase phosphorylation and increased serine/threonine kinase AKT (AKT) activation, while only GRE increased glucose transporter four (Glut4) protein expression. Peroxisome proliferator-activated receptor alpha and gamma (PPARα and γ), and carnitine palmitoyltransferase one (CPT1) expression were increased by ASP alone. CONCLUSION: Together these effects offer a plausible explanation for the ameliorative effect of GRE and ASP on insulin-resistance, an underlying cause for obesity and type 2 diabetes.


Assuntos
Aspalathus , Chalconas/farmacologia , Glucose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Palmitatos/farmacologia , Extratos Vegetais/farmacologia , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Transportador de Glucose Tipo 4/genética , Insulina/farmacologia , Resistência à Insulina , Camundongos , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA