RESUMO
Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.
Assuntos
Infecções por Coronavirus/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Coronavirus/classificação , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Células HEK293 , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Células Vero , Internalização do VírusRESUMO
Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but there is no known mechanism that causes norovirus infection-triggered cell death and lysis1-3. Here we identify a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase NS3 contains an N-terminal four-helix bundle domain homologous to the membrane-disruption domain of the pseudokinase mixed lineage kinase domain-like (MLKL). NS3 has a mitochondrial localization signal and thus induces cell death by targeting mitochondria. Full-length NS3 and an N-terminal fragment of the protein bound the mitochondrial membrane lipid cardiolipin, permeabilized the mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NS3 were essential for cell death, viral egress from cells and viral replication in mice. These findings suggest that noroviruses have acquired a host MLKL-like pore-forming domain to facilitate viral egress by inducing mitochondrial dysfunction.
Assuntos
Morte Celular , Norovirus , Nucleosídeo-Trifosfatase , Proteínas Quinases , Proteínas Virais , Animais , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Norovirus/enzimologia , Norovirus/crescimento & desenvolvimento , Norovirus/patogenicidade , Norovirus/fisiologia , Proteínas Quinases/química , Replicação Viral , Proteínas Virais/química , Proteínas Virais/metabolismo , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Sinais Direcionadores de Proteínas , Cardiolipinas/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismoRESUMO
Polarity in mammalian cells emerges from the assembly of signaling molecules into extensive biochemical interaction networks. Despite their complexity, bacterial pathogens have evolved parsimonious mechanisms to hijack these systems. Here, we develop a tractable experimental and theoretical model to uncover fundamental operating principles, in both mammalian cell polarity and bacterial pathogenesis. Using synthetic derivatives of the enteropathogenic Escherichia coli guanine-nucleotide exchange factor (GEF) Map, we discover that Cdc42 GTPase signal transduction is controlled by the interaction between Map and F-actin. Mathematical modeling reveals how actin dynamics coupled to a Map-dependent positive feedback loop spontaneously polarizes Cdc42 on the plasma membrane. By rewiring the pathogenic signaling circuit to operate through ß-integrin stimulation, we further show how Cdc42 is polarized in response to an extracellular spatial cue. Thus, a molecular pathway of polarity is proposed, centered on the interaction between GEFs and F-actin, which is likely to function in diverse biological systems.
Assuntos
Actinas/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfoproteínas/metabolismo , Actinas/química , Humanos , Modelos Moleculares , Transdução de SinaisRESUMO
The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape, we conducted a gain-of-function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including Jade family PHD zinc finger 3 (JADE3) a protein involved in directing the histone acetyltransferase histone acetyltransferase binding to ORC1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Our results suggest a distinct function for JADE3 as expression of the closely related paralogs JADE1 and JADE2 does not confer resistance to influenza A virus infection. JADE3 is required for both constitutive and inducible expression of the well-characterized antiviral gene interferon-induced transmembrane protein 3 (IFITM3). Furthermore, we find JADE3 activates the NF-kB signaling pathway, which is required for the promotion of IFITM3 expression by JADE3. Therefore, we propose JADE3 activates an antiviral genetic program involving NF-kB-dependent IFITM3 expression to restrict influenza A virus infection.
Assuntos
Regulação da Expressão Gênica , Imunidade Inata , Proteínas de Membrana , NF-kappa B , Proteínas Oncogênicas , Proteínas de Ligação a RNA , Animais , Humanos , Sistemas CRISPR-Cas , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Células HEK293 , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Transdução de Sinais , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologiaRESUMO
Identification of host determinants of coronavirus infection informs mechanisms of pathogenesis and may provide novel therapeutic targets. Here, we demonstrate that the histone demethylase KDM6A promotes infection of diverse coronaviruses, including SARS-CoV, SARS-CoV-2, MERS-CoV and mouse hepatitis virus (MHV) in a demethylase activity-independent manner. Mechanistic studies reveal that KDM6A promotes viral entry by regulating expression of multiple coronavirus receptors, including ACE2, DPP4 and Ceacam1. Importantly, the TPR domain of KDM6A is required for recruitment of the histone methyltransferase KMT2D and histone deacetylase p300. Together this KDM6A-KMT2D-p300 complex localizes to the proximal and distal enhancers of ACE2 and regulates receptor expression. Notably, small molecule inhibition of p300 catalytic activity abrogates ACE2 and DPP4 expression and confers resistance to all major SARS-CoV-2 variants and MERS-CoV in primary human airway and intestinal epithelial cells. These data highlight the role for KDM6A-KMT2D-p300 complex activities in conferring diverse coronaviruses susceptibility and reveal a potential pan-coronavirus therapeutic target to combat current and emerging coronaviruses. One Sentence Summary: The KDM6A/KMT2D/EP300 axis promotes expression of multiple viral receptors and represents a potential drug target for diverse coronaviruses.
Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Histona Desmetilases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismoRESUMO
Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-ß-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.
Assuntos
Infecções por Reoviridae , Reoviridae , Animais , Colesterol/metabolismo , Endossomos/metabolismo , Homeostase , Humanos , Mamíferos , Proteína C1 de Niemann-Pick/metabolismo , Reoviridae/metabolismo , Infecções por Reoviridae/metabolismoRESUMO
Macrophages activated with interferon-γ (IFN-γ) in combination with other proinflammatory stimuli, such as lipopolysaccharide or tumor necrosis factor-α (TNF-α), respond with transcriptional and cellular changes that enhance clearance of intracellular pathogens at the risk of damaging tissues. IFN-γ effects must therefore be carefully balanced with inhibitory mechanisms to prevent immunopathology. We performed a genome-wide CRISPR knockout screen in a macrophage cell line to identify negative regulators of IFN-γ responses. We discovered an unexpected role of the ubiquitin-fold modifier (Ufm1) conjugation system (herein UFMylation) in inhibiting responses to IFN-γ and lipopolysaccharide. Enhanced IFN-γ activation in UFMylation-deficient cells resulted in increased transcriptional responses to IFN-γ in a manner dependent on endoplasmic reticulum stress responses involving Ern1 and Xbp1. Furthermore, UFMylation in myeloid cells is required for resistance to influenza infection in mice, indicating that this pathway modulates in vivo responses to infection. These findings provide a genetic roadmap for the regulation of responses to a key mediator of cellular immunity and identify a molecular link between the UFMylation pathway and immune responses.
Assuntos
Interferon gama/metabolismo , Ativação de Macrófagos/imunologia , Proteínas/metabolismo , Animais , Autofagia/imunologia , Linhagem Celular , Autofagia Mediada por Chaperonas , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/imunologia , Feminino , Interferon gama/imunologia , Lipopolissacarídeos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Transporte Proteico , Proteínas/fisiologiaRESUMO
Noroviruses are a leading cause of gastroenteritis worldwide, yet the molecular mechanisms of how host antiviral factors restrict norovirus infection are poorly understood. Here, we present a CRISPR activation screen that identifies mouse genes which inhibit murine norovirus (MNV) replication. Detailed analysis of the major hit Trim7 demonstrates a potent inhibition of the early stages of MNV replication. Leveraging in vitro evolution, we identified MNV mutants that escape Trim7 restriction by altering the cleavage of the viral NS6-7 polyprotein precursor. NS6, but not the NS6-7 precursor, directly binds the substrate-binding domain of Trim7. Surprisingly, the selective polyprotein processing that enables Trim7 evasion inflicts a significant evolutionary burden, as viruses with decreased NS6-7 cleavage are strongly attenuated in viral replication and pathogenesis. Our data provide an unappreciated mechanism of viral evasion of cellular antiviral factors through selective polyprotein processing and highlight the evolutionary tradeoffs in acquiring resistance to host restriction factors. IMPORTANCE To maximize a limited genetic capacity, viruses encode polyproteins that can be subsequently separated into individual components by viral proteases. While classically viewed as a means of economy, recent findings have indicated that polyprotein processing can spatially and temporally coordinate the distinct phases of the viral life cycle. Here, we present a function for alternative polyprotein processing centered on immune defense. We discovered that selective polyprotein processing of the murine norovirus polyprotein shields MNV from restriction by the host antiviral protein Trim7. Trim7 can bind the viral protein NS6 but not the viral precursor protein NS6-7. Our findings provide insight into the evolutionary pressures that define patterns of viral polyprotein processing and uncover a trade-off between viral replication and immune evasion.
Assuntos
Infecções por Caliciviridae , Norovirus , Poliproteínas , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas não Estruturais Virais , Animais , Evasão da Resposta Imune , Camundongos , Norovirus/genética , Norovirus/fisiologia , Poliproteínas/genética , Poliproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação ViralRESUMO
Noroviruses are a leading cause of gastrointestinal infection in humans and mice. Understanding human norovirus (HuNoV) cell tropism has important implications for our understanding of viral pathogenesis. Murine norovirus (MNoV) is extensively used as a surrogate model for HuNoV. We previously identified CD300lf as the receptor for MNoV. Here, we generated a Cd300lf conditional knockout (CD300lfF/F ) mouse to elucidate the cell tropism of persistent and nonpersistent strains of murine norovirus. Using this mouse model, we demonstrated that CD300lf expression on intestinal epithelial cells (IECs), and on tuft cells in particular, is essential for transmission of the persistent MNoV strain CR6 (MNoVCR6) in vivo In contrast, the nonpersistent MNoV strain CW3 (MNoVCW3) does not require CD300lf expression on IECs for infection. However, deletion of CD300lf in myelomonocytic cells (LysM Cre+) partially reduces CW3 viral load in lymphoid and intestinal tissues. Disruption of CD300lf expression on B cells (CD19 Cre), neutrophils (Mrp8 Cre), and dendritic cells (CD11c Cre) did not affect MNoVCW3 viral RNA levels. Finally, we show that the transcription factor STAT1, which is critical for the innate immune response, partially restricts the cell tropism of MNoVCW3 to LysM+ cells. Taken together, these data demonstrate that CD300lf expression on tuft cells is essential for MNoVCR6; that myelomonocytic cells are a major, but not exclusive, target cell of MNoVCW3; and that STAT1 signaling restricts the cellular tropism of MNoVCW3 This study provides the first genetic system for studying the cell type-specific role of CD300lf in norovirus pathogenesis.IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of gastroenteritis resulting in up to 200,000 deaths each year. The receptor and cell tropism of HuNoV in immunocompetent humans are unclear. We use murine norovirus (MNoV) as a model for HuNoV. We recently identified CD300lf as the sole physiologic receptor for MNoV. Here, we leverage this finding to generate a Cd300lf conditional knockout mouse to decipher the contributions of specific cell types to MNoV infection. We demonstrate that persistent MNoVCR6 requires CD300lf expression on tuft cells. In contrast, multiple CD300lf+ cell types, dominated by myelomonocytic cells, are sufficient for nonpersistent MNoVCW3 infection. CD300lf expression on epithelial cells, B cells, neutrophils, and dendritic cells is not critical for MNoVCW3 infection. Mortality associated with the MNoVCW3 strain in Stat1-/- mice does not require CD300lf expression on LysM+ cells, highlighting that both CD300lf receptor expression and innate immunity regulate MNoV cell tropism in vivo.
Assuntos
Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata/imunologia , Intestinos/imunologia , Norovirus/fisiologia , Receptores Imunológicos/fisiologia , Tropismo Viral , Animais , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Células Epiteliais/virologia , Feminino , Intestinos/virologia , Masculino , Camundongos , Camundongos KnockoutRESUMO
Murine norovirus (MNoV) is an important model of human norovirus (HNoV) and mucosal virus infection more broadly. Viral receptor utilization is a major determinant of cell tropism, host range, and pathogenesis. The bona fide receptor for HNoV is unknown. Recently, we identified CD300lf as a proteinaceous receptor for MNoV. Interestingly, its paralogue CD300ld was also sufficient for MNoV infection in vitro. Here we explored whether CD300lf is the sole physiologic receptor in vivo and whether HNoV can use a CD300 ortholog as an entry receptor. We report that both CD300ld and CD300lf are sufficient for infection by diverse MNoV strains in vitro. We further demonstrate that CD300lf is essential for both oral and parenteral MNoV infection and to elicit anti-MNoV humoral responses in vivo. In mice deficient in STAT1 signaling, CD300lf is required for MNoV-induced lethality. Finally, we demonstrate that human CD300lf (huCD300lf) is not essential for HNoV infection, nor does huCD300lf inhibit binding of HNoV virus-like particles to glycans. Thus, we report huCD300lf is not a receptor for HNoV.
Assuntos
Infecções por Caliciviridae/virologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Norovirus/metabolismo , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Norovirus/crescimento & desenvolvimento , Receptores Imunológicos/fisiologia , Tropismo ViralRESUMO
Host inflammatory responses must be tightly regulated to ensure effective immunity while limiting tissue injury. IFN gamma (IFNγ) primes macrophages to mount robust inflammatory responses. However, IFNγ also induces cell death, and the pathways that regulate IFNγ-induced cell death are incompletely understood. Using genome-wide CRISPR/Cas9 screening, we identified autophagy genes as central mediators of myeloid cell survival during the IFNγ response. Hypersensitivity of autophagy gene-deficient cells to IFNγ was mediated by tumor necrosis factor (TNF) signaling via receptor interacting protein kinase 1 (RIPK1)- and caspase 8-mediated cell death. Mice with myeloid cell-specific autophagy gene deficiency exhibited marked hypersensitivity to fatal systemic TNF administration. This increased mortality in myeloid autophagy gene-deficient mice required the IFNγ receptor, and mortality was completely reversed by pharmacologic inhibition of RIPK1 kinase activity. These findings provide insight into the mechanism of IFNγ-induced cell death via TNF, demonstrate a critical function of autophagy genes in promoting cell viability in the presence of inflammatory cytokines, and implicate this cell survival function in protection against mortality during the systemic inflammatory response.
Assuntos
Autofagia/genética , Interferon gama/toxicidade , Células Mieloides/patologia , Fator de Necrose Tumoral alfa/toxicidade , Animais , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citoproteção/efeitos dos fármacos , Genoma , Camundongos Knockout , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/ultraestrutura , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genéticaRESUMO
Engagement of cell surface receptors by viruses is a critical determinant of viral tropism and disease. The reovirus attachment protein σ1 binds sialylated glycans and proteinaceous receptors to mediate infection, but the specific requirements for different cell types are not entirely known. To identify host factors required for reovirus-induced cell death, we conducted a CRISPR-knockout screen targeting over 20,000 genes in murine microglial BV2 cells. Candidate genes required for reovirus to cause cell death were highly enriched for sialic acid synthesis and transport. Two of the top candidates identified, CMP N-acetylneuraminic acid synthetase (Cmas) and solute carrier family 35 member A1 (Slc35a1), promote sialic acid expression on the cell surface. Two reovirus strains that differ in the capacity to bind sialic acid, T3SA+ and T3SA-, were used to evaluate Cmas and Slc35a1 as potential host genes required for reovirus infection. Following CRISPR-Cas9 disruption of either gene, cell surface expression of sialic acid was diminished. These results correlated with decreased binding of strain T3SA+, which is capable of engaging sialic acid. Disruption of either gene did not alter the low-level binding of T3SA-, which does not engage sialic acid. Furthermore, infectivity of T3SA+ was diminished to levels similar to those of T3SA- in cells lacking Cmas and Slc35a1 by CRISPR ablation. However, exogenous expression of Cmas and Slc35a1 into the respective null cells restored sialic acid expression and T3SA+ binding and infectivity. These results demonstrate that Cmas and Slc35a1, which mediate cell surface expression of sialic acid, are required in murine microglial cells for efficient reovirus binding and infection.IMPORTANCE Attachment factors and receptors are important determinants of dissemination and tropism during reovirus-induced disease. In a CRISPR cell survival screen, we discovered two genes, Cmas and Slc35a1, which encode proteins required for sialic acid expression on the cell surface and mediate reovirus infection of microglial cells. This work elucidates host genes that render microglial cells susceptible to reovirus infection and expands current understanding of the receptors on microglial cells that are engaged by reovirus. Such knowledge may lead to new strategies to selectively target microglial cells for oncolytic applications.
Assuntos
N-Acilneuraminato Citidililtransferase/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Infecções por Reoviridae/virologia , Reoviridae/fisiologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Camundongos , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/genética , Proteínas de Transporte de Nucleotídeos/genética , Receptores Virais/metabolismo , Reoviridae/genética , Reoviridae/metabolismo , Infecções por Reoviridae/metabolismo , Ligação Viral , Replicação ViralRESUMO
Human norovirus is the leading cause of gastroenteritis worldwide, yet basic questions about its life cycle remain unanswered due to an historical lack of robust experimental systems. Recent studies on the closely related murine norovirus (MNV) have identified CD300LF as an indispensable entry factor for MNV. We compared the MNV susceptibilities of cells from different mouse strains and identified polymorphisms in murine CD300LF which are critical for its function as an MNV receptor. Bone marrow-derived macrophages (BMDMs) from I/LnJ mice were resistant to infection from multiple MNV strains which readily infect BMDMs from C57BL/6J mice. The resistance of I/LnJ BMDMs was specific to MNV, since the cells supported infection of other viruses comparably to C57BL/6J BMDMs. Transduction of I/LnJ BMDMs with C57BL/6J CD300LF made the cells permissible to MNV infection, suggesting that the cause of resistance lies in the entry step of MNV infection. In fact, we mapped this phenotype to a 4-amino-acid difference at the CC' loop of CD300LF; swapping of these amino acids between C57BL/6J and I/LnJ CD300LF proteins made the mutant C57BL/6J CD300LF functionally impaired and the corresponding mutant of I/LnJ CD300LF functional as an MNV entry factor. Surprisingly, expression of the I/LnJ CD300LF in other cell types made the cells infectible by MNV, even though the I/LnJ allele did not function as an MNV receptor in macrophage-like cells. Correspondingly, I/LnJ CD300LF bound MNV virions in permissive cells but not in nonpermissive cells. Collectively, our data suggest the existence of a cell type-specific modifier of MNV entry.IMPORTANCE MNV is a prevalent model system for studying human norovirus, which is the leading cause of gastroenteritis worldwide and thus a sizeable public health burden. Elucidating mechanisms underlying susceptibility of host cells to MNV infection can lead to insights on the roles that specific cell types play during norovirus pathogenesis. Here, we show that different alleles of the proteinaceous receptor for MNV, CD300LF, function in a cell type-dependent manner. In contrast to the C57BL/6J allele, which functions as an MNV entry factor in all tested cell types, including human cells, I/LnJ CD300LF does not function as an MNV entry factor in macrophage-like cells but does allow MNV entry in other cell types. Together, these observations indicate the existence of cell type-specific modifiers of CD300LF-dependent MNV entry.
Assuntos
Infecções por Caliciviridae/virologia , Resistência à Doença/genética , Polimorfismo Genético , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Animais , Sítios de Ligação , Gastroenterite/virologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Modelos Moleculares , Norovirus , Conformação Proteica , Receptores Imunológicos/química , Análise de Sequência de Proteína , Internalização do VírusRESUMO
Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf-P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM-derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.
Assuntos
Ácidos e Sais Biliares/química , Simulação de Acoplamento Molecular , Norovirus/química , Receptores Imunológicos/química , Vírion/química , Animais , Ácidos e Sais Biliares/metabolismo , Infecções por Caliciviridae , Linhagem Celular , Microscopia Crioeletrônica , Camundongos , Mutação , Norovirus/genética , Norovirus/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Vírion/genética , Vírion/metabolismoRESUMO
Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide, yet host factors that restrict NoV replication are not well understood. Here, we use a CRISPR activation genome-wide screening to identify host genes that can inhibit murine norovirus (MNoV) replication in human cells. Our screens identified with high confidence 49 genes that can inhibit MNoV infection when overexpressed. A significant number of these genes are in interferon and immune regulation signaling networks, but surprisingly, the majority of the genes identified are neither associated with innate or adaptive immunity nor associated with any antiviral activity. Confirmatory studies of eight of the genes validate the initial screening data. Mechanistic studies on TRIM7 demonstrated a conserved role of the molecule in mouse and human cells in restricting MNoV in a step of infection after viral entry. Furthermore, we demonstrate that two isoforms of TRIM7 have differential antiviral activity. Taken together, these data provide a resource for understanding norovirus biology and demonstrate a robust methodology for identifying new antiviral molecules.IMPORTANCE Norovirus is one of the leading causes of food-borne illness worldwide. Despite its prevalence, our understanding of norovirus biology is limited due to the difficulty in growing human norovirus in vitro and a lack of an animal model. Murine norovirus (MNoV) is a model norovirus system because MNoV replicates robustly in cell culture and in mice. To identify host genes that can restrict norovirus replication when overexpressed, we performed genome-wide CRISPR activation screens to induce gene overexpression at the native locus through recruitment of transcriptional activators to individual gene promoters. We found 49 genes that could block murine norovirus replication in human cells. Several of these genes are associated with classical immune signaling pathways, while many of the molecules we identified have not been previously associated with antiviral activity. Our data are a resource for those studying noroviruses, and we provide a robust approach to identify novel antiviral genes.
Assuntos
Antivirais/farmacologia , Infecções por Caliciviridae/genética , Proteínas de Transporte/farmacologia , Redes Reguladoras de Genes , Norovirus/fisiologia , Animais , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/virologia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células HeLa , Humanos , Camundongos , Modelos Biológicos , Norovirus/efeitos dos fármacos , Ativação Transcricional , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Regulação para Cima , Internalização do Vírus , Replicação Viral/efeitos dos fármacosRESUMO
The fidelity and specificity of information flow within a cell is controlled by scaffolding proteins that assemble and link enzymes into signalling circuits. These circuits can be inhibited by bacterial effector proteins that post-translationally modify individual pathway components. However, there is emerging evidence that pathogens directly organize higher-order signalling networks through enzyme scaffolding, and the identity of the effectors and their mechanisms of action are poorly understood. Here we identify the enterohaemorrhagic Escherichia coli O157:H7 type III effector EspG as a regulator of endomembrane trafficking using a functional screen, and report ADP-ribosylation factor (ARF) GTPases and p21-activated kinases (PAKs) as its relevant host substrates. The 2.5 Å crystal structure of EspG in complex with ARF6 shows how EspG blocks GTPase-activating-protein-assisted GTP hydrolysis, revealing a potent mechanism of GTPase signalling inhibition at organelle membranes. In addition, the 2.8 Å crystal structure of EspG in complex with the autoinhibitory Iα3-helix of PAK2 defines a previously unknown catalytic site in EspG and provides an allosteric mechanism of kinase activation by a bacterial effector. Unexpectedly, ARF and PAKs are organized on adjacent surfaces of EspG, indicating its role as a 'catalytic scaffold' that effectively reprograms cellular events through the functional assembly of GTPase-kinase signalling complex.
Assuntos
Fatores de Ribosilação do ADP/metabolismo , Biocatálise , Escherichia coli O157/química , Proteínas de Escherichia coli/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Fatores de Ribosilação do ADP/química , Regulação Alostérica , Animais , Transporte Biológico , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Complexo de Golgi/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Membranas Intracelulares/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Desdobramento de Proteína , Ratos , Técnicas do Sistema de Duplo-Híbrido , Quinases Ativadas por p21/químicaRESUMO
Interferon (IFN) induced activities are critical, early determinants of immune responses and infection outcomes. A key facet of IFN responses is the upregulation of hundreds of mRNAs termed interferon-stimulated genes (ISGs) that activate intrinsic and cell-mediated defenses. While primary interferon signaling is well-delineated, other layers of regulation are less explored but implied by aberrant ISG expression signatures in many diseases in the absence of infection. Consistently, our examination of tonic ISG levels across uninfected human tissues and individuals revealed three ISG subclasses. As tissue identity and many comorbidities with increased virus susceptibility are characterized by differences in metabolism, we characterized ISG responses in cells grown in media known to favor either aerobic glycolysis (glucose) or oxidative phosphorylation (galactose supplementation). While these conditions over time had a varying impact on the expression of ISG RNAs, the differences were typically greater between treatments than between glucose/galactose. Interestingly, extended interferon-priming led to divergent expression of two ISG proteins: upregulation of IRF1 in IFN-γ/glucose and increased IFITM3 in galactose by IFN-α and IFN-γ. In agreement with a hardwired response, glucose/galactose regulation of interferon-γ induced IRF1 is conserved in unrelated mouse and cat cell types. In galactose conditions, proteasome inhibition restored interferon-γ induced IRF1 levels to that of glucose/interferon-γ. Glucose/interferon-γ decreased replication of the model poxvirus vaccinia at low MOI and high MOIs. Vaccinia replication was restored by IRF1 KO. In contrast, but consistent with differential regulation of IRF1 protein by glucose/galactose, WT and IRF1 KO cells in galactose media supported similar levels of vaccinia replication regardless of IFN-γ priming. Also associated with glucose/galactose is a seemingly second block at a very late stage in viral replication which results in reductions in herpes- and poxvirus titers but not viral protein expression. Collectively, these data illustrate a novel layer of regulation for the key ISG protein, IRF1, mediated by glucose/galactose and imply unappreciated subprograms embedded in the interferon response. In principle, such cellular circuitry could rapidly adapt immune responses by sensing changing metabolite levels consumed during viral replication and cell proliferation.
RESUMO
The intestinal mucosal surface is directly exposed to daily fluctuations in food and microbes driven by 24-hour light and feeding cycles. Intestinal epithelial tuft cells are key sentinels that surveil the gut luminal environment, but how these cells are diurnally programmed remains unknown. Here, we show that histone deacetylase 3 (HDAC3) controls tuft cell specification and the diurnal rhythm of its biogenesis, which is regulated by the gut microbiota and feeding schedule. Disruption of epithelial HDAC3 decreases tuft cell numbers, impairing antihelminth immunity and norovirus infection. Mechanistically, HDAC3 functions noncanonically to activate transforming growth factor-ß (TGF-ß) signaling, which promotes rhythmic expression of Pou2f3, a lineage-defining transcription factor of tuft cells. Our findings reveal an environmental-epigenetic link that controls the diurnal differentiation of tuft cells and promotes rhythmic mucosal surveillance and immune responses in anticipation of exogenous challenges.
Assuntos
Ritmo Circadiano , Histona Desacetilases , Mucosa Intestinal , Fator de Crescimento Transformador beta , Animais , Histona Desacetilases/metabolismo , Histona Desacetilases/imunologia , Ritmo Circadiano/imunologia , Camundongos , Mucosa Intestinal/imunologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/imunologia , Camundongos Endogâmicos C57BL , Vigilância Imunológica , Microbioma Gastrointestinal/imunologia , Masculino , Camundongos Knockout , Feminino , Imunidade nas Mucosas , Células em TufoRESUMO
Trim7 is an E3 ubiquitin ligase that was recently identified as a central regulator of host- viral interactions with both pro-viral and anti-viral activity in cell culture. As an inhibitor, Trim7 overexpression ubiquitinates viral proteins by recognizing C-terminal glutamines that are hallmarks of 3C-like protease cleavage events. Here we sought to determine the physiological impact of Trim7 in resolving murine norovirus (MNV) infection of mice as MNV is potently inhibited by Trim7 in vitro. Utilizing two independently derived Trim7 deficient mouse lines we found no changes in the viral burden or tissue distribution of MNV in both an acute and persistent model of infection. Additionally, no changes in cytokine responses were observed after acute MNV infection of Trim7-deficient mice. Furthermore, removal of potentially confounding innate immune responses such as STING and STAT1 did not reveal any role for Trim7 in regulating MNV replication. Taken together, our data fails to find a physiological role for Trim7 in regulating MNV infection outcomes in mice and serves as a caution for defining Trim7 as a broad acting antiviral. Importance: Intrinsic antiviral molecules that restrict viral replication are important drivers of viral evolution and viral tropism. Recently, Trim7 was shown to provide cell intrinsic protection against RNA viruses, including murine norovirus. Biochemically, Trim7 recognizes the cleavage product of viral proteases, suggesting a novel and broad mechanism to restrict viral replication. Here, we tested whether Trim7 had a physiological role in restricting murine norovirus replication in mice. Unexpectedly, we found no impact of viral replication or innate immune responses during murine norovirus infection. Our findings urge caution in defining Trim7 as a broad antiviral factor in the absence of in vivo evidence.
RESUMO
Small molecular weight GTPases are master regulators of eukaryotic signalling, making them prime targets for bacterial virulence factors. Here, we review the recent advances made in understanding how bacterial type III secreted effector proteins directly activate GTPase signalling cascades. Specifically we focus on the SopE/WxxxE family of effectors that functionally mimic guanine nucleotide exchange factors (GEFs): the endogenous activators of Rho-family GTPases. Recent structural and biochemical studies have provided keen insight into both the signalling potency and substrate specificity of bacterial GEFs. Additionally, these bacterial GEFs display fascinating cell biological properties that provide insight into both host cell physiology and infectious disease strategies.