Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(42): e2404485121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39382998

RESUMO

Tumor-targeted therapies have often been inefficient due to the lack of concomitant control over the tumor microenvironment. Using an immunocompetent autologous breast cancer model, we investigated a MAtrix REgulating MOtif (MAREMO)-mimicking peptide, which inhibits the protumorigenic extracellular matrix (ECM) molecule tenascin-C that activates several cancer hallmarks. In cultured cells, targeting the MAREMO blocks tenascin-C signaling involved in cell adhesion and immune-suppression by inhibiting tenascin-C interactions with fibronectin, TGFß, CXCL12, and others, thereby blocking downstream events. Using RNASequencing and various genetic, molecular, in situ, and in vivo assays, we demonstrate that the MAREMO peptide similarly blocks multiple tenascin-C functions in vivo. This includes releasing tumor-infiltrating leukocytes, including CD8+ T cells, from the stroma. The MAREMO peptide also triggers interferon signaling, restoring antitumor immunity, contributing to tumor growth inhibition and reduced dissemination. The MAREMO peptide targets tumor cells directly by promoting growth suppression and inhibiting phenotypic plasticity, subsequently enhancing responsiveness to the endogenous death inducer tumor necrosis factor-related apoptosis-inducing ligand, as shown by a loss-of-function approach. Moreover, the MAREMO peptide largely subdues the tumor bed by depleting fibroblasts, repressing tenascin-C and other ECM molecules, and restoring the function of the few remaining blood vessels. In conclusion, targeting tenascin-C with a MAREMO peptide represents a powerful anticancer strategy with a broad inhibition of several cancer hallmarks.


Assuntos
Tenascina , Microambiente Tumoral , Tenascina/metabolismo , Humanos , Animais , Camundongos , Feminino , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Matriz Extracelular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peptídeos/farmacologia , Quimiocina CXCL12/metabolismo , Fibronectinas/metabolismo
2.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36102918

RESUMO

The roles of the extracellular matrix molecule tenascin-C (TNC) in health and disease have been extensively reviewed since its discovery over 40 years ago. Here, we will describe recent insights into the roles of TNC in tumorigenesis, angiogenesis, immunity and metastasis. In addition to high levels of expression in tumors, and during chronic inflammation, and bacterial and viral infection, TNC is also expressed in lymphoid organs. This supports potential roles for TNC in immunity control. Advances using murine models with engineered TNC levels were instrumental in the discovery of important functions of TNC as a danger-associated molecular pattern (DAMP) molecule in tissue repair and revealed multiple TNC actions in tumor progression. TNC acts through distinct mechanisms on many different cell types with immune cells coming into focus as important targets of TNC in cancer. We will describe how this knowledge could be exploited for cancer disease management, in particular for immune (checkpoint) therapies.


Assuntos
Neoplasias , Tenascina , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Matriz Extracelular/metabolismo , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Tenascina/genética , Tenascina/metabolismo
3.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176074

RESUMO

Bidirectional dialogue between cellular and non-cellular components of the tumor microenvironment (TME) drives cancer survival. In the extracellular space, combinations of matrix molecules and soluble mediators provide external cues that dictate the behavior of TME resident cells. Often studied in isolation, integrated cues from complex tissue microenvironments likely function more cohesively. Here, we study the interplay between the matrix molecule tenascin-C (TNC) and chemokine CCL2, both elevated in and associated with the progression of breast cancer and playing key roles in myeloid immune responses. We uncover a correlation between TNC/CCL2 tissue levels in HER2+ breast cancer and examine the physical and functional interactions of these molecules in a murine disease model with tunable TNC levels and in in vitro cellular and cell-free models. TNC supported sustained CCL2 synthesis, with chemokine binding to TNC via two distinct domains. TNC dominated the behavior of tumor-resident myeloid cells; CCL2 did not impact macrophage survival/activation whilst TNC facilitated an immune suppressive macrophage phenotype that was not dependent on or altered by CCL2 co-expression. Together, these data map new binding partners within the TME and demonstrate that whilst the matrix exerts transcriptional control over the chemokine, each plays a distinct role in subverting anti-tumoral immunity.


Assuntos
Neoplasias , Tenascina , Animais , Camundongos , Quimiocinas/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Tenascina/metabolismo , Quimiocina CCL2/metabolismo
4.
Biochem Biophys Res Commun ; 530(2): 471-478, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32593416

RESUMO

Tenascin-C (TNC) and tenascin-W (TNW), large hexameric glycoproteins overexpressed in the tumor microenvironment, are useful tumor biomarkers for theranostic applications. For now, polyclonal and monoclonal antibodies, as well as aptamers targeting TNC and TNW have been developed. However, the immunostaining sensitivity of antibodies is very heterogenous. The main aim of this study was to generate antibodies in dromedary that detect TNC and TNW, respectively. We show that immune sera from immunized dromedaries are able to specifically bind native TNC and TNW by ELISA and also to detect TNC and TNW in matrix tracks of mammary tumors by immunostaining. Furthermore, we demonstrate that purified IgG subtypes are able to interact specifically with TNC or TNW by ELISA and immunostaining. These camelid antibodies are a good basis to develop tools for the detection of TNC and TNW in the tumor microenvironment and could potentially have a broader application for early diagnosis of solid cancers.


Assuntos
Anticorpos/imunologia , Camelus/imunologia , Tenascina/imunologia , Animais , Anticorpos/análise , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Células HEK293 , Humanos , Imunização , Camundongos , Microscopia de Fluorescência , Tenascina/análise , Microambiente Tumoral
5.
Biol Cell ; 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907957

RESUMO

BACKGROUND INFORMATION: Tumor stroma remodeling is a key feature of malignant tumors and can promote cancer progression. Laminins are major constituents of basement membranes that physically separate the epithelium from the underlying stroma. RESULTS: By employing mouse models expressing high and low levels of the laminin α1 chain (LMα1), we highlighted its implication in a tumor-stroma crosstalk, thus leading to increased colon tumor incidence, angiogenesis and tumor growth. The underlying mechanism involves attraction of carcinoma-associated fibroblasts by LMα1, VEGFA expression triggered by the complex integrin α2ß1-CXCR4 and binding of VEGFA to LM-111, which in turn promotes angiogenesis, tumor cell survival and proliferation. A gene signature comprising LAMA1, ITGB1, ITGA2, CXCR4 and VEGFA has negative predictive value in colon cancer. CONCLUSIONS: Together, we have identified VEGFA, CXCR4 and α2ß1 integrin downstream of LMα1 in colon cancer as of bad prognostic value for patient survival. SIGNIFICANCE: This information opens novel opportunities for diagnosis and treatment of colon cancer.

6.
J Cell Sci ; 129(23): 4321-4327, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875272

RESUMO

Tenascin-C (TNC) is a hexameric, multimodular extracellular matrix protein with several molecular forms that are created through alternative splicing and protein modifications. It is highly conserved amongst vertebrates, and molecular phylogeny indicates that it evolved before fibronectin. Tenascin-C has many extracellular binding partners, including matrix components, soluble factors and pathogens; it also influences cell phenotype directly through interactions with cell surface receptors. Tenascin-C protein synthesis is tightly regulated, with widespread protein distribution in embryonic tissues, but restricted distribution of tenascin-C in adult tissues. Tenascin-C is also expressed de novo during wound healing or in pathological conditions, including chronic inflammation and cancer. First described as a modulator of cell adhesion, tenascin-C also directs a plethora of cell signaling and gene expression programs by shaping mechanical and biochemical cues within the cellular microenvironment. Exploitment of the pathological expression and function of tenascin-C is emerging as a promising strategy to develop new diagnostic, therapeutic and bioengineering tools. In this Cell Science at a Glance article and the accompanying poster we provide a succinct and comprehensive overview of the structural and functional features of tenascin-C and its potential roles in developing embryos and under pathological conditions.


Assuntos
Tenascina/metabolismo , Animais , Doença , Humanos , Ligação Proteica , Tenascina/genética
7.
Blood ; 123(26): 4054-63, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24833352

RESUMO

Around birth, hematopoietic stem cells (HSCs) expanding in the fetal liver migrate to the developing bone marrow (BM) to mature and expand. To identify the molecular processes associated with HSCs located in the 2 different microenvironments, we compared the expression profiles of HSCs present in the liver and BM of perinatal mice. This revealed the higher expression of a cluster of extracellular matrix-related genes in BM HSCs, with secreted protein acidic and rich in cysteine (SPARC) being one of the most significant ones. This extracellular matrix protein has been described to be involved in tissue development, repair, and remodeling, as well as metastasis formation. Here we demonstrate that SPARC-deficient mice display higher resistance to serial treatment with the chemotherapeutic agent 5-fluorouracil (5-FU). Using straight and reverse chimeras, we further show that this protective effect is not due to a role of SPARC in HSCs, but rather is due to its function in the BM niche. Although the kinetics of recovery of the hematopoietic system is normal, HSCs in a SPARC-deficient niche show an accelerated return to quiescence, protecting them from the lethal effects of serial 5-FU treatment. This may become clinically relevant, as SPARC inhibition and its protective effect on HSCs could be used to optimize chemotherapy schemes.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Microambiente Celular/efeitos dos fármacos , Fluoruracila/efeitos adversos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Osteonectina/metabolismo , Aloenxertos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Microambiente Celular/genética , Fluoruracila/farmacologia , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Knockout , Osteonectina/genética , Quimeras de Transplante/metabolismo
8.
Org Biomol Chem ; 12(47): 9601-20, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25338628

RESUMO

A series of bis-, tris- and tetra-phosphonated pyridine ligands is presented. In view of their potential use as chelates for radiopharmaceutical applications, the physico-chemical properties of the ligands and of their Co(II), Ni(II), Cu(II), and Zn(II) complexes were studied by means of potentiometry and UV-Vis absorption spectroscopy. The pKa values of the ligands and of the complexes, as well as the stability constants for the formation of the complexes, are presented. The kinetic aspects of the formation of Cu(II) complexes and of their dissociation in acidic media were studied by means of stopped flow experiments, and the stability of the Cu(II) complex toward reduction to Cu(I) was investigated by cyclic voltammetry and by titration with different reducing agents. The different thermodynamic and kinetic aspects of the polyphosphonated ligands were compared with regard to the impact of the number of phosphonic acid functions. Considering the very promising properties for complexation, preliminary SPECT/CT imaging experiments were carried out on mice with (99m)Tc using the bis- and tetra-phosphonated ligands L(2) and L(1). Finally, a bifunctional version of chelate L(1), L*, was used to label MTn12, a rat monoclonal antibody with both specificity and relatively high affinity for murine tenascin-C. The labeling was monitored by MALDI/MS spectrometry and the affinity of the labeled antibody was checked by immunostaining experiments. After chelation with (99m)Tc, the (99m)Tc-L*-MTn12 antibody was injected into a transgenic mouse with breast cancer and the biodistribution of the labeled antibody was followed by SPECT/CT imaging.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Organofosfonatos/química , Piridinas/química , Compostos Radiofarmacêuticos/química , Animais , Anticorpos Monoclonais/química , Neoplasias da Mama/diagnóstico , Feminino , Ligantes , Camundongos , Camundongos Transgênicos , Ratos , Tenascina/análise , Termodinâmica , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
9.
Matrix Biol ; 130: 1-19, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642843

RESUMO

Tenascin-C (TNC) is a matricellular and multimodular glycoprotein highly expressed under pathological conditions, especially in cancer and chronic inflammatory diseases. Since a long time TNC is considered as a promising target for diagnostic and therapeutic approaches in anti-cancer treatments and was already extensively targeted in clinical trials on cancer patients. This review provides an overview of the current most advanced strategies used for TNC detection and anti-TNC theranostic approaches including some advanced clinical strategies. We also discuss novel treatment protocols, where targeting immune modulating functions of TNC could be center stage.


Assuntos
Neoplasias , Tenascina , Tenascina/metabolismo , Tenascina/genética , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Animais , Terapia de Alvo Molecular , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
10.
JCI Insight ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39475853

RESUMO

Rheumatoid arthritis (RA) is one of the most common autoimmune disorders and is characterized by exacerbated joint inflammation that can lead to tissue remodeling and autoantigen generation. Despite the well-documented accumulation of the serine protease Granzyme B (GzmB) in the biospecimens of patients with RA, little is understood pertaining to its role in pathobiology. In the present study Tenascin-C (TN-C), a large extracellular matrix glycoprotein and an endogenous trigger of inflammation, was identified as a substrate for GzmB in RA. GzmB cleaves TN-C in vitro to generate three fragments: a 130 kDa fragment that remains anchored to the matrix, and two 70 and 30 kDa fragments that are released and solubilized. Mass spectrometry results seem to indicate that the 30 kDa fragment generated by GzmB most likely contains TN-C pro-inflammatory C-terminal fibrinogen-like domain. Soluble levels of GzmB and TN-C are also significantly elevated in the synovial fluids of RA patients compared to healthy controls, with two 70 kDa and 30 kDa soluble TN-C fragments detectable in the synovial fluids of RA patients. The molecular weights of these fragments coincide with those generated by GzmB in vitro, suggesting that GzmB also cleaves TN-C in RA patients. Granzyme K (GzmK), another member of the granzyme family, also cleaves TN-C in vitro. However, unlike GzmB, the molecular weights of TN-C fragments generated by GzmK in vitro do not correspond to fragments identified in patients. Altogether, our data supports the contribution of Granzyme B, but not Granzyme K, to RA through the cleavage of Tenascin-C.

11.
Sci Adv ; 9(13): eadd9275, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989370

RESUMO

Controlled tissue growth is essential for multicellular life and requires tight spatiotemporal control over cell proliferation and differentiation until reaching homeostasis. As cells synthesize and remodel extracellular matrix, tissue growth processes can only be understood if the reciprocal feedback between cells and their environment is revealed. Using de novo-grown microtissues, we identified crucial actors of the mechanoregulated events, which iteratively orchestrate a sharp transition from tissue growth to maturation, requiring a myofibroblast-to-fibroblast transition. Cellular decision-making occurs when fibronectin fiber tension switches from highly stretched to relaxed, and it requires the transiently up-regulated appearance of tenascin-C and tissue transglutaminase, matrix metalloprotease activity, as well as a switch from α5ß1 to α2ß1 integrin engagement and epidermal growth factor receptor signaling. As myofibroblasts are associated with wound healing and inflammatory or fibrotic diseases, crucial knowledge needed to advance regenerative strategies or to counter fibrosis and cancer progression has been gained.


Assuntos
Matriz Extracelular , Fibroblastos , Humanos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Cicatrização , Fibrose , Biofísica
12.
Matrix Biol ; 116: 1-27, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669744

RESUMO

Tracks rich in matrix and cells, as described in several cancer types, have immunosuppressive functions and separate tumor nests and stroma, yet their origin is unknown. Immunostainings of cryosections from mouse breast tumors show that these tracks are bordered by an endothelial-like basement membrane, filled with fibers of collagen adjacent to tenascin-C (TNC) and low-tension fibronectin (Fn) fibers. While present in early-stage tumors and maturing with time, tracks still form under TNC KO conditions, however, host (not tumor cell)-derived TNC is important for track maturation. Tumor infiltrating leukocytes (mostly M2 macrophages and CD8+ T cells) are retained in tracks of early-stage tumors. Following track maturation, retained tumor infiltrating leukocyte (TIL) numbers get reduced and more CD8+ TIL enter the tumor nests in the absence of TNC. As these tracks are enriched with platelets and fibrinogen and have a demarcating endothelial-like basement membrane often adjacent to endothelial cells, this suggests a role of blood vessels in the formation of these tracks. The Fn fiber tension probe FnBPA5 colocalizes with TNC and immune cells in the tracks and shows decreased binding in tracks lacking TNC. Consequently, FnBPA5 can serve as probe for tumor matrix tracks that have immune suppressive properties.


Assuntos
Fibronectinas , Neoplasias , Camundongos , Animais , Fibronectinas/metabolismo , Células Endoteliais/metabolismo , Neoplasias/patologia , Macrófagos/metabolismo , Tenascina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 31(1): 117-24, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20651280

RESUMO

OBJECTIVE: The identification of platelet-reactive proteins exclusively present in atherosclerotic plaques could provide interesting targets for effective and safe antithrombotic strategies. In this context, we explored platelet adhesion and activation to tenascin-C (TN-C), a matrix protein preferentially found within atheroma. METHODS AND RESULTS: We show that platelets efficiently adhere to TN-C under both static and flow conditions. Videomicroscopy revealed a unique behavior under flow, with platelets exhibiting stationary adhesion to TN-C; in contrast, platelets rolled over von Willebrand factor and detached from fibrinogen. Platelet interaction with TN-C was predominantly supported by integrin α(2)ß(1) under static conditions, whereas under high shear, it was dependent on both the α(2)ß(1) integrin and the glycoprotein Ib-IX complex. Integrin α(IIb)ß(3) appeared to play a secondary role but only at low shear rates. The glycoprotein Ib-IX-dependent interaction was indirect, relying on von Willebrand factor, and increased as a function of wall shear rate. Von Willebrand factor bound directly to TN-C, as shown by ELISA and coimmunoprecipitation, suggesting that it acts as a bridge between TN-C and platelets. The adhesion of platelets to TN-C triggered their activation, as demonstrated by a shape change and increases in intracellular calcium level. CONCLUSIONS: This study provides evidence that TN-C serves as a novel adhesive matrix for platelets in a context that is relevant to atherothrombosis.


Assuntos
Aterosclerose/sangue , Plaquetas/metabolismo , Ativação Plaquetária , Tenascina/metabolismo , Aterosclerose/fisiopatologia , Cálcio/sangue , Forma Celular , Fibronectinas/metabolismo , Humanos , Integrina alfa2/sangue , Integrina alfa2beta1/sangue , Integrina beta3/sangue , Glicoproteínas de Membrana/sangue , Microscopia de Vídeo , Adesividade Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Fluxo Sanguíneo Regional , Estresse Mecânico , Fatores de Tempo , Fator de von Willebrand/metabolismo
14.
Org Biomol Chem ; 10(46): 9183-90, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23086384

RESUMO

The synthesis of a phosphonated acyclic bifunctional chelate L* for the labeling of biomaterial is described. L* is based on a pyridine backbone, functionalized in ortho positions by aminomethyl-bis-methylphosphonic acids, and, in the para position, by a side chain containing a reactive NHS carbamate function. The stability of L* in aqueous solutions at different pH values was studied by mass spectrometry, showing the activated function to be sensitive to hydrolysis above neutral pH. The reactivity of L* towards amine functions was tested using ethylamine under different conditions of pH and concentrations, and by the labeling of two reference peptides containing both an N-terminal amino function and a ε-amino group of a lysine residue in the backbone, and a supplementary thiol group of a cysteine residue for one of these two peptides. The results showed the coupling to be efficient at pH 8.0, with a total selectivity for the terminal amine function with respect to lysine and cysteine. The labeling was further performed on B28-13, a mouse monoclonal antibody specifically recognizing tenascin-C protein in human cancer. The labeled antibody was characterized by means of mass spectrometry and spectrofluorimetry, unraveling a labeling ratio of one chelate per antibody. Finally, the affinity of the labeled antibody towards its target was controlled by immunofluorescence staining experiments on human colon cancer biopsies, confirming the affinity of the labeled peptide for tenascin-C.


Assuntos
Quelantes/síntese química , Neoplasias do Colo/patologia , Proteínas de Neoplasias/análise , Organofosfonatos/química , Peptídeos/química , Piridinas/química , Tenascina/análise , Anticorpos Monoclonais/química , Biópsia , Neoplasias do Colo/diagnóstico por imagem , Cisteína/química , Etilaminas/química , Imunofluorescência , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Lisina/química , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem/métodos , Tomografia Computadorizada por Raios X
15.
Cell Mol Life Sci ; 68(19): 3175-99, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21818551

RESUMO

Tenascin-C is an extracellular matrix glycoprotein that is specifically and transiently expressed upon tissue injury. Upon tissue damage, tenascin-C plays a multitude of different roles that mediate both inflammatory and fibrotic processes to enable effective tissue repair. In the last decade, emerging evidence has demonstrated a vital role for tenascin-C in cardiac and arterial injury, tumor angiogenesis and metastasis, as well as in modulating stem cell behavior. Here we highlight the molecular mechanisms by which tenascin-C mediates these effects and discuss the implications of mis-regulated tenascin-C expression in driving disease pathology.


Assuntos
Tenascina/fisiologia , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Regulação da Expressão Gênica , Humanos , Camundongos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Ratos , Células-Tronco/metabolismo , Células-Tronco/patologia , Tenascina/sangue , Tenascina/química , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Cicatrização/fisiologia
16.
iScience ; 25(10): 105149, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185376

RESUMO

Age-related diseases are major concern in developed countries. To avoid disabilities that accompany increased lifespan, pharmaceutical approaches are considered. Therefore, appropriate animal models are required for a better understanding of aging processes and potential in vivo assays to evaluate the impact of molecules that may delay the occurrence of age-related diseases. Few mouse models exhibiting pathological aging exist, but currently, none of them reproducibly mimics human diseases like osteoporosis, cognitive dysfunctions or sarcopenia that can be seen in some, but not all, elders. Here, we describe the premature aging phenotypes of Dicer-deficient mature animals, which exhibit an overall deterioration of many organs and tissues (skin, heart, and adipose tissue) ultimately leading to a significant reduction of their lifespan. Molecular characterization of transcriptional responses focused on the adipose tissue suggested that both canonical and non-canonical functions of DICER are involved in this process and highlight potential actionable pathways to revert it.

17.
Matrix Biol ; 106: 12-33, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032611

RESUMO

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are severe inflammatory disorders that often involve focal necrotizing glomerulonephritis (FNGN) and consequent glomerular scarring, interstitial fibrosis, and chronic kidney disease. Robust murine models of scarring in FNGN that may help to further our understanding of deleterious processes are still lacking. Here, we present a murine model of severe FNGN based on combined administration of antibodies against the glomerular basement membrane (GBM) and myeloperoxidase (MPO), and bacterial lipopolysaccharides (LPS), that recapitulates acute injury and was adapted to investigate subsequent glomerular and interstitial scarring. Hematuria without involvement of other organs occurs consistently and rapidly, glomerular necrosis and crescent formation are evident at 12 days, and consequent glomerular and interstitial scarring at 29 days after initial treatment. Using mass-spectrometric proteome analysis, we provide a detailed overview of matrisomal and cellular changes in our model. We observed increased expression of the matrisome including collagens, fibronectin, tenascin-C, in accordance with human AAV as deduced from analysis of gene expression microarrays and tissue staining. Moreover, we observed tissue infiltration by neutrophils, macrophages, T cells and myofibroblasts upon injury. Experimental inhibition of CXCR4 using AMD3100 led to a sustained histological presence of fibrin extravasate, reduced chemokine expression and leukocyte activation, but did not markedly affect ECM composition. Altogether, we demonstrate an adapted FNGN model that enables the study of matrisomal changes both in disease and upon intervention, as exemplified via CXCR4 inhibition.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Glomerulonefrite , Receptores CXCR4 , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Anticorpos Anticitoplasma de Neutrófilos , Membrana Basal Glomerular/metabolismo , Glomerulonefrite/genética , Glomerulonefrite/patologia , Humanos , Camundongos , Peroxidase/genética , Peroxidase/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
18.
Matrix Biol ; 108: 20-38, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35227929

RESUMO

The extracellular matrix molecule Tenascin-C (TNC) promotes cancer and chronic inflammation by multiple mechanisms. Recently, TNC was shown to promote an immune suppressive tumor microenvironment (TME) through binding soluble chemoattracting factors, thus retaining leukocytes in the stroma. TNC also binds to fibronectin (FN) and other molecules, raising the question of a potential common TNC binding mechanism. By sequence comparison of two TNC-interacting domains in FN, the fifth (FN5) and thirteenth (FN13) fibronectin type III domains we identified a MAtrix REgulating MOtif "MAREMO" or M-motif that is highly conserved amongst vertebrates. By sequence analysis, structural modeling and functional analysis we found also putative M-motifs in TNC itself. We showed by negative staining electron microscopic imaging that the M-motif in FN mediates interactions with FN as well as with TNC. We generated two M-motif mimetic peptides P5 and P13 resembling the M-motif in FN5 and FN13, respectively. By using structural information we modelled binding of these M-motif mimetics revealing a putative MAREMO binding site MBS in FN5 and TN3, respectively overlapping with the M-motif. We further demonstrated that the M-motif mimetic peptides blocked several functions of TNC, such as binding of TNC to FN, cell rounding on a mixed FN/TNC substratum, FN matrix expression and subsequent assembly, TNC-induced signaling and gene expression, TNC chemokine binding and dendritic cell retention, thus providing novel opportunities to inhibit TNC actions. Our results suggest that targeting the MAREMO/MBS interaction could be exploited for reducing inflammation and matrix functions in cancer and fibrosis.


Assuntos
Neoplasias , Tenascina , Animais , Matriz Extracelular/metabolismo , Inflamação , Neoplasias/genética , Peptídeos , Tenascina/genética , Tenascina/metabolismo , Microambiente Tumoral
19.
J Biol Chem ; 285(51): 40212-29, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20929862

RESUMO

Fibronectin (FN) deposition mediated by fibroblasts is an important process in matrix remodeling and wound healing. By monitoring the deposition of soluble biotinylated FN, we show that the stress-induced TG-FN matrix, a matrix complex of tissue transglutaminase (TG2) with its high affinity binding partner FN, can increase both exogenous and cellular FN deposition and also restore it when cell adhesion is interrupted via the presence of RGD-containing peptides. This mechanism does not require the transamidase activity of TG2 but is activated through an RGD-independent adhesion process requiring a heterocomplex of TG2 and FN and is mediated by a syndecan-4 and ß1 integrin co-signaling pathway. By using α5 null cells, ß1 integrin functional blocking antibody, and a α5ß1 integrin targeting peptide A5-1, we demonstrate that the α5 and ß1 integrins are essential for TG-FN to compensate RGD-induced loss of cell adhesion and FN deposition. The importance of syndecan-2 in this process was shown using targeting siRNAs, which abolished the compensation effect of TG-FN on the RGD-induced loss of cell adhesion, resulting in disruption of actin skeleton formation and FN deposition. Unlike syndecan-4, syndecan-2 does not interact directly with TG2 but acts as a downstream effector in regulating actin cytoskeleton organization through the ROCK pathway. We demonstrate that PKCα is likely to be the important link between syndecan-4 and syndecan-2 signaling and that TG2 is the functional component of the TG-FN heterocomplex in mediating cell adhesion via its direct interaction with heparan sulfate chains.


Assuntos
Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Integrina alfa5beta1/metabolismo , Oligopeptídeos/farmacologia , Transdução de Sinais/fisiologia , Sindecana-2/metabolismo , Sindecana-4/metabolismo , Transglutaminases/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Células CHO , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Cricetinae , Cricetulus , Citoesqueleto/genética , Citoesqueleto/metabolismo , Matriz Extracelular/genética , Fibronectinas/genética , Proteínas de Ligação ao GTP/genética , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , Integrina alfa5beta1/genética , Camundongos , Camundongos Mutantes , Proteína 2 Glutamina gama-Glutamiltransferase , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Sindecana-2/genética , Sindecana-4/genética , Transglutaminases/genética , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
20.
J Biol Chem ; 285(10): 7697-711, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20048158

RESUMO

The Neuromutagenesis Facility at the Jackson Laboratory generated a mouse model of retinal vasculopathy, nmf223, which is characterized clinically by vitreal fibroplasia and vessel tortuosity. nmf223 homozygotes also have reduced electroretinogram responses, which are coupled histologically with a thinning of the inner nuclear layer. The nmf223 locus was mapped to chromosome 17, and a missense mutation was identified in Lama1 that leads to the substitution of cysteine for a tyrosine at amino acid 265 of laminin alpha1, a basement membrane protein. Despite normal localization of laminin alpha1 and other components of the inner limiting membrane, a reduced integrity of this structure was suggested by ectopic cells and blood vessels within the vitreous. Immunohistochemical characterization of nmf223 homozygous retinas demonstrated the abnormal migration of retinal astrocytes into the vitreous along with the persistence of hyaloid vasculature. The Y265C mutation significantly reduced laminin N-terminal domain (LN) interactions in a bacterial two-hybrid system. Therefore, this mutation could affect interactions between laminin alpha1 and other laminin chains. To expand upon these findings, a Lama1 null mutant, Lama1(tm1.1Olf), was generated that exhibits a similar but more severe retinal phenotype than that seen in nmf223 homozygotes. The increased severity of the Lama1 null mutant phenotype is probably due to the complete loss of the inner limiting membrane in these mice. This first report of viable Lama1 mouse mutants emphasizes the importance of this gene in retinal development. The data presented herein suggest that hypomorphic mutations in human LAMA1 could lead to retinal disease.


Assuntos
Laminina , Mutação de Sentido Incorreto , Isoformas de Proteínas , Retina , Doenças Retinianas , Vasos Retinianos , Adulto , Sequência de Aminoácidos , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Membrana Basal/citologia , Membrana Basal/metabolismo , Eletrorretinografia , Feminino , Teste de Complementação Genética , Humanos , Laminina/genética , Laminina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Dados de Sequência Molecular , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Retina/anormalidades , Retina/anatomia & histologia , Retina/fisiologia , Doenças Retinianas/genética , Doenças Retinianas/patologia , Vasos Retinianos/anormalidades , Vasos Retinianos/anatomia & histologia , Vasos Retinianos/fisiologia , Alinhamento de Sequência , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA