Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(5): 1168-1171, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857240

RESUMO

Phase and polarization singularities in electromagnetic waves are usually attributed to one-dimensional topologies-lines, knots, and braids. Recently, particle-like structures have been predicted and observed: optical Skyrmions, vortices with spherical polarization, etc. In this article, we devise vector Airy beams with point-like singularity in the focal plane, thus leading to the presence of a particle-like topology. We present an extensive analytical analysis of the spatial spectra and focal structure of such beams. We report on the presence of a free-space lattice of bimerons in such vector Airy beams.

2.
Opt Express ; 29(21): 33331-33345, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809147

RESUMO

Beams exhibiting long focal lines and small focal spot sizes are desired in a variety of applications and are called optical needles, with Bessel beams being a common example. Conical prisms are regularly used to generate Bessel beams, however, this method is usually plagued by an appearance of on-axis oscillations. In this work, we consider an optical element based on the space-domain Pancharatnam-Berry phase (PBP) to generate a high-power optical needle with a smooth and constant on-axis intensity profile. The phase in PBP elements is not introduced through optical path differences but results from the geometric phase that accompanies space-variant polarization manipulation. Our implementation is based on a type 2 modification of bulk transparent glass material, resulting in the formation of nanogratings with slow axes aligned perpendicular to the grating corrugation. We investigate both numerically and experimentally the stability of an optical needle generation under imperfect conditions. Influences of misalignments in the optical schema are investigated numerically and experimentally.

3.
Opt Express ; 27(25): 36358-36367, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873417

RESUMO

Bessel terahertz (THz) imaging employing a pair of thin silicon multi-phase diffractive optical elements is demonstrated in continuous wave mode at 0.6 THz. A proposed Bessel zone plate (BZP) design - discrete axicon containing 4 phase quantization levels - based on high-resistivity silicon and produced by laser ablation technology allowed to extend the focal depth up to 20 mm with minimal optical losses and refuse employment of bulky parabolic mirrors in the imaging setup. Compact THz imaging system in transmission geometry reveals a possibility to inspect objects of more than 10 mm thickness with enhanced contrast and increased resolution up to 0.6 of the wavelength by applying deconvolution algorithms.

4.
Light Sci Appl ; 11(1): 326, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36385101

RESUMO

Structured light - electromagnetic waves with a strong spatial inhomogeneity of amplitude, phase, and polarization - has occupied far-reaching positions in both optical research and applications. Terahertz (THz) waves, due to recent innovations in photonics and nanotechnology, became so robust that it was not only implemented in a wide variety of applications such as communications, spectroscopic analysis, and non-destructive imaging, but also served as a low-cost and easily implementable experimental platform for novel concept illustration. In this work, we show that structured nonparaxial THz light in the form of Airy, Bessel, and Gaussian beams can be generated in a compact way using exclusively silicon diffractive optics prepared by femtosecond laser ablation technology. The accelerating nature of the generated structured light is demonstrated via THz imaging of objects partially obscured by an opaque beam block. Unlike conventional paraxial approaches, when a combination of a lens and a cubic phase (or amplitude) mask creates a nondiffracting Airy beam, we demonstrate simultaneous lensless nonparaxial THz Airy beam generation and its application in imaging system. Images of single objects, imaging with a controllable placed obstacle, and imaging of stacked graphene layers are presented, revealing hence potential of the approach to inspect quality of 2D materials. Structured nonparaxial THz illumination is investigated both theoretically and experimentally with appropriate extensive benchmarks. The structured THz illumination consistently outperforms the conventional one in resolution and contrast, thus opening new frontiers of structured light applications in imaging and inverse scattering problems, as it enables sophisticated estimates of optical properties of the investigated structures.

5.
Sci Rep ; 6: 27264, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27277521

RESUMO

The interaction of light with matter strongly depends on the structure of the latter at wavelength scale. Ordered systems interact with light via collective modes, giving rise to diffraction. In contrast, completely disordered systems are dominated by Mie resonances of individual particles and random scattering. However, less clear is the transition regime in between these two extremes, where diffraction, Mie resonances and near-field interaction between individual scatterers interplay. Here, we probe this transitional regime by creating colloidal crystals with controlled disorder from two-dimensional self-assembly of bidisperse spheres. Choosing the particle size in a way that the small particles are transparent in the spectral region of interest enables us to probe in detail the effect of increasing positional disorder on the optical properties of the large spheres. With increasing disorder a transition from a collective optical response characterized by diffractive resonances to single particles scattering represented by Mie resonances occurs. In between these extremes, we identify an intermediate, hopping-like light transport regime mediated by resonant interactions between individual spheres. These results suggest that different levels of disorder, characterized not only by absence of long range order but also by differences in short-range correlation and interparticle distance, exist in colloidal glasses.

6.
Science ; 347(6225): 964-6, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25636796

RESUMO

Möbius strips are three-dimensional geometrical structures, fascinating for their peculiar property of being surfaces with only one "side"­or, more technically, being "nonorientable" surfaces. Despite being easily realized artificially, the spontaneous emergence of these structures in nature is exceedingly rare. Here, we generate Möbius strips of optical polarization by tightly focusing the light beam emerging from a q-plate, a liquid crystal device that modifies the polarization of light in a space-variant manner. Using a recently developed method for the three-dimensional nanotomography of optical vector fields, we fully reconstruct the light polarization structure in the focal region, confirming the appearance of Möbius polarization structures. The preparation of such structured light modes may be important for complex light beam engineering and optical micro- and nanofabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA