Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 185, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36038899

RESUMO

BACKGROUND: In a time of rapid environmental change, understanding how the challenges experienced by one generation can influence the fitness of future generations is critically needed. Using tolerance assays and transcriptomic and methylome approaches, we use zebrafish as a model to investigate cross-generational acclimation to hypoxia. RESULTS: We show that short-term paternal exposure to hypoxia endows offspring with greater tolerance to acute hypoxia. We detected two hemoglobin genes that are significantly upregulated by more than 6-fold in the offspring of hypoxia exposed males. Moreover, the offspring which maintained equilibrium the longest showed greatest upregulation in hemoglobin expression. We did not detect differential methylation at any of the differentially expressed genes, suggesting that other epigenetic mechanisms are responsible for alterations in gene expression. CONCLUSIONS: Overall, our findings suggest that an epigenetic memory of past hypoxia exposure is maintained and that this environmentally induced information is transferred to subsequent generations, pre-acclimating progeny to cope with hypoxic conditions.


Assuntos
Exposição Paterna , Peixe-Zebra , Aclimatação , Animais , Epigênese Genética , Humanos , Hipóxia/genética , Masculino , Peixe-Zebra/genética
2.
J Antimicrob Chemother ; 78(1): 122-132, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36322484

RESUMO

BACKGROUND: Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) compromise the clinical efficacy of vancomycin. The hVISA isolates spontaneously produce vancomycin-intermediate Staphylococcus aureus (VISA) cells generated by diverse and intriguing mechanisms. OBJECTIVE: To characterize the biomolecular profile of clinical hVISA applying genomic, transcriptomic and metabolomic approaches. METHODS: 39 hVISA and 305 VSSA and their genomes were included. Core genome-based Bayesian phylogenetic reconstructions were built and alterations in predicted proteins in VISA/hVISA were interrogated. Linear discriminant analysis and a Genome-Wide Association Study were performed. Differentially expressed genes were identified in hVISA-VSSA by RNA-sequencing. The undirected profiles of metabolites were determined by liquid chromatography and hydrophilic interaction in six CC5-MRSA. RESULTS: Genomic relatedness of MRSA associated to hVISA phenotype was not detected. The change Try38 → His in Atl (autolysin) was identified in 92% of the hVISA. We identified SNPs and k-mers associated to hVISA in 11 coding regions with predicted functions in virulence, transport systems, carbohydrate metabolism and tRNA synthesis. Further, capABCDE, sdrD, esaA, esaD, essA and ssaA genes were overexpressed in hVISA, while lacABCDEFG genes were downregulated. Additionally, valine, threonine, leucine tyrosine, FAD and NADH were more abundant in VSSA, while arginine, glycine and betaine were more abundant in hVISA. Finally, we observed altered metabolic pathways in hVISA, including purine and pyrimidine pathway, CoA biosynthesis, amino acid metabolism and aminoacyl tRNA biosynthesis. CONCLUSIONS: Our results show that the mechanism of hVISA involves major changes in regulatory systems, expression of virulence factors and reduction in glycolysis via TCA cycle. This work contributes to the understanding of the development of this complex resistance mechanism in regional strains.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Vancomicina/farmacologia , Staphylococcus aureus/genética , Staphylococcus aureus Resistente à Vancomicina/genética , Estudo de Associação Genômica Ampla , América Latina , Teorema de Bayes , Multiômica , Filogenia , Resistência a Vancomicina/genética , RNA de Transferência , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
3.
Reprod Biomed Online ; 29(5): 627-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25246117

RESUMO

BMP15 has drawn particular attention in the pathophysiology of reproduction, as its mutations in mammalian species have been related to different reproductive phenotypes. In humans, BMP15 coding regions have been sequenced in large panels of women with premature ovarian failure (POF), but only some mutations have been definitely validated as causing the phenotype. A functional association between the BMP15 c.-9C>G promoter polymorphism and cause of POF have been reported. The aim of this study was to determine the potential functional effect of this sequence variant on specific BMP15 promoter transactivation disturbances. Bioinformatics was used to identify transcription factor binding sites located on the promoter region of BMP15. Reverse transcription polymerase chain reaction was used to study specific gene expression in ovarian tissue. Luciferase reporter assays were used to establish transactivation disturbances caused by the BMP15 c.-9C>G variant. The c.-9C>G variant was found to modify the PITX1 transcription factor binding site. PITX1 and BMP15 co-expressed in human and mouse ovarian tissue, and PITX1 transactivated both BMP15 promoter versions (-9C and -9G). It was found that the BMP15 c.-9G allele was related to BMP15 increased transcription, supporting c.-9C>G as a causal agent of POF.


Assuntos
Proteína Morfogenética Óssea 15/genética , Ovário/metabolismo , Polimorfismo de Nucleotídeo Único , Insuficiência Ovariana Primária/genética , Regiões Promotoras Genéticas , Alelos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Biologia Computacional , Feminino , Variação Genética , Humanos , Luciferases/metabolismo , Camundongos , Mutação , Fatores de Transcrição Box Pareados/metabolismo , Fenótipo , Transcrição Gênica , Ativação Transcricional
4.
Sci Rep ; 14(1): 8497, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605121

RESUMO

Coronavirus disease 2019 (COVID-19) was considered a major public health burden worldwide. Multiple studies have shown that susceptibility to severe infections and the development of long-term symptoms is significantly influenced by viral and host factors. These findings have highlighted the potential of host genetic markers to identify high-risk individuals and develop target interventions to reduce morbimortality. Despite its importance, genetic host factors remain largely understudied in Latin-American populations. Using a case-control design and a custom next-generation sequencing (NGS) panel encompassing 81 genetic variants and 74 genes previously associated with COVID-19 severity and long-COVID, we analyzed 56 individuals with asymptomatic or mild COVID-19 and 56 severe and critical cases. In agreement with previous studies, our results support the association between several clinical variables, including male sex, obesity and common symptoms like cough and dyspnea, and severe COVID-19. Remarkably, thirteen genetic variants showed an association with COVID-19 severity. Among these variants, rs11385942 (p < 0.01; OR = 10.88; 95% CI = 1.36-86.51) located in the LZTFL1 gene, and rs35775079 (p = 0.02; OR = 8.53; 95% CI = 1.05-69.45) located in CCR3 showed the strongest associations. Various respiratory and systemic symptoms, along with the rs8178521 variant (p < 0.01; OR = 2.51; 95% CI = 1.27-4.94) in the IL10RB gene, were significantly associated with the presence of long-COVID. The results of the predictive model comparison showed that the mixed model, which incorporates genetic and non-genetic variables, outperforms clinical and genetic models. To our knowledge, this is the first study in Colombia and Latin-America proposing a predictive model for COVID-19 severity and long-COVID based on genomic analysis. Our study highlights the usefulness of genomic approaches to studying host genetic risk factors in specific populations. The methodology used allowed us to validate several genetic variants previously associated with COVID-19 severity and long-COVID. Finally, the integrated model illustrates the importance of considering genetic factors in precision medicine of infectious diseases.


Assuntos
COVID-19 , Masculino , Humanos , COVID-19/epidemiologia , COVID-19/genética , Colômbia/epidemiologia , Síndrome de COVID-19 Pós-Aguda , Sequenciamento de Nucleotídeos em Larga Escala , Fatores de Risco
5.
Appl Clin Genet ; 17: 57-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803352

RESUMO

Purpose: Breast Cancer (BC) is the main female cancer diagnosed worldwide, and it has been described that few genes, such as BRCA1, have a high penetrance for this type of cancer. In this manuscript, we were interested in evaluating the effect of 3'UTR variants on BRCA1 expression. Patients and Methods: To accomplish this objective, Whole Exome Sequencing (WES) data of 400 patients with unselected BC was used to filter variants located in the region of interest of BRCA1 gene, finding two of them (c.*36C>G and c.*369_373del). miRGate and miRanda in silico tools were used to predict microRNA (miRNA) interaction. Results: The two variants (c.*36C>G, c.*369_373del) were predicted to affect miRNA interaction. After cloning of BRCA1 3'UTR into pMIR-Report vector, the construct was transfected into two BC cell lines (MDA-MB-231 and MCF-7), and the variant c.*36C>G evidenced overexpression of reporter gene luciferase, showing that the transcript was not being degraded by the miRNA in MDA-MB-231 cells. Conclusion: The variant seems to protect against Triple Negative BC probably due to the expression level of miRNA in this particular cell line (MDA-MB-231). This is consistent with the clinical history of the patients who harbor BC Hormone Receptors positive (HR+).

6.
PLoS One ; 19(7): e0306445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38991024

RESUMO

Clopidogrel is widely used worldwide as an antiplatelet therapy in patients with acute coronary disease. Genetic factors influence interindividual variability in response. Some studies have explored the polygenic contributions in the drug response, generating pharmacogenomic risk scores (PgxPRS). Importantly, these factors are less explored in underrepresented populations, such as Latin-American countries. Identifying patients at risk of high-on-treatment platelet reactivity (HTPR) is highly valuable in translational medicine. In this study we used a custom next-generation sequencing (NGS) panel composed of 91 single nucleotide polymorphisms (SNPs) and 28 genes related to clopidogrel metabolism, to analyze 70 patients with platelet reactivity values, assessed through closure time (CT). Our results demonstrated the association of SNPs with HTPR and non-HTPR, revealing the strongest associations with rs2286823 (OR: 5,0; 95% CI: 1,02-24,48; p: 0,03), rs2032582 (OR: 4,41; 95% CI: 1,20-16,12; p: 0,019), and rs1045642 (OR: 3,38; 95% CI: 0,96-11,9; p: 0,05). Bivariate regression analysis demonstrated the significant association of several SNPs with the CT value, a "surrogate" biomarker of clopidogrel response. Exploratory results from the LASSO regression model showed a high discriminatory capacity between HTPR and non-HTPR patients (AUC: 0,955), and the generated PgxPRS demonstrated a significant negative association between the risk score, CT value, and the condition of HTPR and non-HTPR. To our knowledge, our study addresses for the first time the analysis of the polygenic contribution in platelet reactivity using NGS and establishes PgxPRS derived from the LASSO model. Our results demonstrate the polygenic implication of clopidogrel response and offer insights applicable to the translational medicine of antiplatelet therapy in an understudied population.


Assuntos
Plaquetas , Clopidogrel , Sequenciamento de Nucleotídeos em Larga Escala , Inibidores da Agregação Plaquetária , Polimorfismo de Nucleotídeo Único , Humanos , Clopidogrel/uso terapêutico , Clopidogrel/farmacologia , Masculino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/farmacologia , Pessoa de Meia-Idade , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Idoso , Herança Multifatorial/genética , Ticlopidina/análogos & derivados , Ticlopidina/uso terapêutico , Ticlopidina/farmacologia
7.
Front Med (Lausanne) ; 10: 1160368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601778

RESUMO

Background: Colorectal cancer (CRC) is a prevalent cancer, ranking as the third most common. Recent advances in our understanding of the molecular causes of this disease have highlighted the crucial role of tumor immune evasion in its initiation and progression. CTLA4, a receptor that acts as a negative regulator of T cell responses, plays a pivotal role in this process, and genetic variations in CTLA4 have been linked to CRC susceptibility, prognosis, and response to therapy. Methods: We conducted a case-control study involving 98 CRC patients and 424 controls. We genotyped the CTLA4 c.-319C > T variant (rs5742909) and performed an association analysis by comparing allele frequencies between the patients and controls. To assess the potential functional impact of this variant, we first performed an In Silico analysis of transcription factor binding sites using Genomatix. Finally, to validate our findings, we conducted a luciferase reporter gene assay using different cell lines and an electrophoretic mobility shift assay (EMSA). Results: The case-control association analysis revealed a significant association between CTLA4 c.-319C > T and CRC susceptibility (p = 0.023; OR 1.89; 95% CI = 1.11-3.23). Genomatix analysis identified LEF1 and TCF7 transcription factors as specific binders to CTLA4 c.-319C. The reporter gene assay demonstrated notable differences in luciferase activity between the c.-319 C and T alleles in COS-7, HCT116, and Jurkat cell lines. EMSA analysis showed differences in TCF7 interaction with the CTLA4 C and T alleles. Conclusion: CTLA4 c.-319C > T is associated with CRC susceptibility. Based on our functional validation results, we proposed that CTLA4 c.-319C > T alters gene expression at the transcriptional level, triggering a stronger negative regulation of T-cells and immune tumoral evasion.

8.
Front Pharmacol ; 14: 1047854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021041

RESUMO

Background: Genetic interindividual variability is associated with adverse drug reactions (ADRs) and affects the response to common drugs used in anesthesia. Despite their importance, these variants remain largely underexplored in Latin-American countries. This study describes rare and common variants found in genes related to metabolism of analgesic and anaesthetic drug in the Colombian population. Methods: We conducted a study that included 625 Colombian healthy individuals. We generated a subset of 14 genes implicated in metabolic pathways of common medications used in anesthesia and assessed them by whole-exome sequencing (WES). Variants were filtered using two pipelines: A) novel or rare (minor allele frequency-MAF <1%) variants including missense, loss-of-function (LoF, e.g., frameshift, nonsense), and splice site variants with potential deleterious effect and B) clinically validated variants described in the PharmGKB (categories 1, 2 and 3) and/or ClinVar databases. For rare and novel missense variants, we applied an optimized prediction framework (OPF) to assess the functional impact of pharmacogenetic variants. Allelic, genotypic frequencies and Hardy-Weinberg equilibrium were calculated. We compare our allelic frequencies with these from populations described in the gnomAD database. Results: Our study identified 148 molecular variants potentially related to variability in the therapeutic response to 14 drugs commonly used in anesthesiology. 83.1% of them correspond to rare and novel missense variants classified as pathogenic according to the pharmacogenetic optimized prediction framework, 5.4% were loss-of-function (LoF), 2.7% led to potential splicing alterations and 8.8% were assigned as actionable or informative pharmacogenetic variants. Novel variants were confirmed by Sanger sequencing. Allelic frequency comparison showed that the Colombian population has a unique pharmacogenomic profile for anesthesia drugs with some allele frequencies different from other populations. Conclusion: Our results demonstrated high allelic heterogeneity among the analyzed sampled, enriched by rare (91.2%) variants in pharmacogenes related to common drugs used in anesthesia. The clinical implications of these results highlight the importance of implementation of next-generation sequencing data into pharmacogenomic approaches and personalized medicine.

9.
Nat Commun ; 14(1): 6364, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848431

RESUMO

Combining genome assembly with population and functional genomics can provide valuable insights to development and evolution, as well as tools for species management. Here, we present a chromosome-level genome assembly of the common brushtail possum (Trichosurus vulpecula), a model marsupial threatened in parts of their native range in Australia, but also a major introduced pest in New Zealand. Functional genomics reveals post-natal activation of chemosensory and metabolic genes, reflecting unique adaptations to altricial birth and delayed weaning, a hallmark of marsupial development. Nuclear and mitochondrial analyses trace New Zealand possums to distinct Australian subspecies, which have subsequently hybridised. This admixture allowed phasing of parental alleles genome-wide, ultimately revealing at least four genes with imprinted, parent-specific expression not yet detected in other species (MLH1, EPM2AIP1, UBP1 and GPX7). We find that reprogramming of possum germline imprints, and the wider epigenome, is similar to eutherian mammals except onset occurs after birth. Together, this work is useful for genetic-based control and conservation of possums, and contributes to understanding of the evolution of novel mammalian epigenetic traits.


Assuntos
Marsupiais , Animais , Austrália , Nova Zelândia/epidemiologia
10.
Front Pharmacol ; 13: 931531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846994

RESUMO

In genes related to drug pharmacokinetics, molecular variations determine interindividual variability in the therapeutic efficacy and adverse drug reactions. The assessment of single-nucleotide variants (SNVs) is used with growing frequency in pharmacogenetic practice, and recently, high-throughput genomic analyses obtained through next-generation sequencing (NGS) have been recognized as powerful tools to identify common, rare and novel variants. These genetic profiles remain underexplored in Latin-American populations, including Colombia. In this study, we investigated the variability of 35 genes included in the ADME core panel (absorption, distribution, metabolism, and excretion) by whole-exome sequencing (WES) of 509 unrelated Colombian individuals with no previous reports of adverse drug reactions. Rare variants were filtered according to the minor allele frequencies (MAF) <1% and potential deleterious consequences. The functional impact of novel and rare missense variants was assessed using an optimized framework for pharmacogenetic variants. Bioinformatic analyses included the identification of clinically validated variants described in PharmGKB and ClinVar databases. Ancestry from WES data was inferred using the R package EthSEQ v2.1.4. Allelic frequencies were compared to other populations reported in the public gnomAD database. Our analysis revealed that rare missense pharmacogenetic variants were 2.1 times more frequent than common variants with 121 variants predicted as potentially deleterious. Rare loss of function (LoF) variants were identified in 65.7% of evaluated genes. Regarding variants with clinical pharmacogenetic effect, our study revealed 89 sequence variations in 28 genes represented by missense (62%), synonymous (22.5%), splice site (11.2%), and indels (3.4%). In this group, ABCB1, ABCC2, CY2B6, CYP2D6, DPYD, NAT2, SLC22A1, and UGTB2B7, are the most polymorphic genes. NAT2, CYP2B6 and DPYD metabolizer phenotypes demonstrated the highest variability. Ancestry analysis indicated admixture in 73% of the population. Allelic frequencies exhibit significant differences with other Latin-American populations, highlighting the importance of pharmacogenomic studies in populations of different ethnicities. Altogether, our data revealed that rare variants are an important source of variability in pharmacogenes involved in the pharmacokinetics of drugs and likely account for the unexplained interindividual variability in drug response. These findings provide evidence of the utility of WES for pharmacogenomic testing and into clinical practice.

11.
Methods Protoc ; 5(5)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287045

RESUMO

RT-PCR tests have become the gold standard for detecting the SARS-CoV-2 virus in the context of the COVID-19 pandemic. Because of the extreme number of cases in periodic waves of infection, there is a severe financial and logistical strain on diagnostic laboratories. For this reason, alternative implementations and validations of academic protocols that employ the lowest cost and the most widely available equipment and reagents found in different regions are essential. In this study, we report an alternative implementation of the EUA 2019-nCoV CDC assay which uses a previously characterized duplex PCR reaction for the N1 and RNAse P target regions and an additional uniplex reaction for the N2 target region. Taking advantage of the Abbott m2000 Sample Preparation System and NEB Luna Universal Probe One-Step RT-qPCR kit, some of the most widely available and inexpensive nucleic acid extraction and amplification platforms, this modified test shows state-of-the-art analytical and clinical sensitivities and specificities when compared with the Seegene Allplex-SARS-CoV-2 assay. This implementation has the potential to be verified and implemented by diagnostic laboratories around the world to guarantee low-cost RT-PCR tests that can take advantage of widely available equipment and reagents.

12.
Front Med (Lausanne) ; 9: 910098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795626

RESUMO

Genetic and non-genetic factors are responsible for the high interindividual variability in the response to SARS-CoV-2. Although numerous genetic polymorphisms have been identified as risk factors for severe COVID-19, these remain understudied in Latin-American populations. This study evaluated the association of non-genetic factors and three polymorphisms: ACE rs4646994, ACE2 rs2285666, and LZTFL1 rs11385942, with COVID severity and long-term symptoms by using a case-control design. The control group was composed of asymptomatic/mild cases (n = 61) recruited from a private laboratory, while the case group was composed of severe/critical patients (n = 63) hospitalized in the Hospital Universitario Mayor-Méderi, both institutions located in Bogotá, Colombia. Clinical follow up and exhaustive revision of medical records allowed us to assess non-genetic factors. Genotypification of the polymorphism of interest was performed by amplicon size analysis and Sanger sequencing. In agreement with previous reports, we found a statistically significant association between age, male sex, and comorbidities, such as hypertension and type 2 diabetes mellitus (T2DM), and worst outcomes. We identified the polymorphism LZTFL1 rs11385942 as an important risk factor for hospitalization (p < 0.01; OR = 5.73; 95% CI = 1.2-26.5, under the allelic test). Furthermore, long-term symptoms were common among the studied population and associated with disease severity. No association between the polymorphisms examined and long-term symptoms was found. Comparison of allelic frequencies with other populations revealed significant differences for the three polymorphisms investigated. Finally, we used the statistically significant genetic and non-genetic variables to develop a predictive logistic regression model, which was implemented in a Shiny web application. Model discrimination was assessed using the area under the receiver operating characteristic curve (AUC = 0.86; 95% confidence interval 0.79-0.93). These results suggest that LZTFL1 rs11385942 may be a potential biomarker for COVID-19 severity in addition to conventional non-genetic risk factors. A better understanding of the impact of these genetic risk factors may be useful to prioritize high-risk individuals and decrease the morbimortality caused by SARS-CoV2 and future pandemics.

13.
Sci Adv ; 8(36): eabm2427, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070377

RESUMO

TET (ten-eleven translocation) enzymes catalyze the oxidation of 5-methylcytosine bases in DNA, thus driving active and passive DNA demethylation. Here, we report that the catalytic domain of mammalian TET enzymes favor CGs embedded within basic helix-loop-helix and basic leucine zipper domain transcription factor-binding sites, with up to 250-fold preference in vitro. Crystal structures and molecular dynamics calculations show that sequence preference is caused by intrasubstrate interactions and CG flanking sequence indirectly affecting enzyme conformation. TET sequence preferences are physiologically relevant as they explain the rates of DNA demethylation in TET-rescue experiments in culture and in vivo within the zygote and germ line. Most and least favorable TET motifs represent DNA sites that are bound by methylation-sensitive immediate-early transcription factors and octamer-binding transcription factor 4 (OCT4), respectively, illuminating TET function in transcriptional responses and pluripotency support.


Assuntos
5-Metilcitosina , Dioxigenases , 5-Metilcitosina/metabolismo , Animais , Domínio Catalítico , Fenômenos Fisiológicos Celulares , DNA , Dioxigenases/genética , Dioxigenases/metabolismo , Mamíferos/genética
14.
Methods Mol Biol ; 2272: 29-44, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34009607

RESUMO

Whole-genome bisulfite sequencing (WGBS) is a popular method for characterizing cytosine methylation because it is fully quantitative and has base-pair resolution. While WGBS is prohibitively expensive for experiments involving many samples, low-coverage WGBS can accurately determine global methylation and erasure at similar cost to high-performance liquid chromatography (HPLC) or enzyme-linked immunosorbent assays (ELISA). Moreover, low-coverage WGBS has the capacity to distinguish between methylation in different cytosine contexts (e.g., CG, CHH, and CHG), can tolerate low-input material (<100 cells), and can detect the presence of overrepresented DNA originating from mitochondria or amplified ribosomal DNA. In addition to describing a WGBS library construction and quantitation approach, here we detail computational methods to predict the accuracy of low-coverage WGBS using empirical bootstrap samplers and theoretical estimators similar to those used in election polling. Using examples, we further demonstrate how non-independent sampling of cytosines can alter the precision of error calculation and provide methods to improve this.


Assuntos
Blastocisto/metabolismo , Metilação de DNA , DNA/genética , Genoma , Análise de Sequência de DNA/métodos , Sulfitos/química , Sequenciamento Completo do Genoma/métodos , Animais , Blastocisto/citologia , Bovinos , Biologia Computacional , DNA/análise , Epigênese Genética
15.
Elife ; 102021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34227937

RESUMO

In mammals, females generally live longer than males. Nevertheless, the mechanisms underpinning sex-dependent longevity are currently unclear. Epigenetic clocks are powerful biological biomarkers capable of precisely estimating chronological age and identifying novel factors influencing the aging rate using only DNA methylation data. In this study, we developed the first epigenetic clock for domesticated sheep (Ovis aries), which can predict chronological age with a median absolute error of 5.1 months. We have discovered that castrated male sheep have a decelerated aging rate compared to intact males, mediated at least in part by the removal of androgens. Furthermore, we identified several androgen-sensitive CpG dinucleotides that become progressively hypomethylated with age in intact males, but remain stable in castrated males and females. Comparable sex-specific methylation differences in MKLN1 also exist in bat skin and a range of mouse tissues that have high androgen receptor expression, indicating that it may drive androgen-dependent hypomethylation in divergent mammalian species. In characterizing these sites, we identify biologically plausible mechanisms explaining how androgens drive male-accelerated aging.


Assuntos
Envelhecimento/genética , Androgênios/deficiência , Metilação de DNA , Epigênese Genética , Feminização/veterinária , Orquiectomia/veterinária , Carneiro Doméstico/fisiologia , Animais , Relógios Biológicos , Feminino , Feminização/metabolismo , Masculino , Carneiro Doméstico/cirurgia
16.
Vasc Health Risk Manag ; 17: 689-699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764653

RESUMO

BACKGROUND: Paraoxonase-1 (PON1), a glycoprotein associated with serum high-density lipoprotein (HDL), has a central role in metabolizing lipid peroxides, exhibiting antiatherogenic properties. The polymorphism p.Q192R has been previously associated with coronary artery disease (CAD) susceptibility and clopidogrel response. PURPOSE: We aimed at investigating the association of PON1 p.Q192R with CAD and clopidogrel response in Colombian population. PATIENTS AND METHODS: The study was conducted among 163 patients diagnosed with CAD and treated with clopidogrel. The allele frequencies for the PON1 192Q and 192R alleles were determined in cases and Latin-American controls obtained from the public database gnomAD (n = 17,711). Response to clopidogrel was determined by assessing the platelet function using the INNOVANCE PFA-200 System. We determined the association between PON1 p.Q192R polymorphism, increased susceptibility to CAD and high on-treatment platelet reactivity (HPR) by using odds ratio (OR) and 95% confidence interval (CI) on four genetic models. RESULTS: The allele frequencies for the PON1 192Q and 192R alleles were 0.60 and 0.40, respectively. The allele distribution was found to be statistically different from the control group and other ethnic groups. The allele 192R was positively associated with decreased susceptibility to CAD under a dominant model (OR, 0.58; 95% CI, 0.42-0.8; P < 0.01). We found no association between the polymorphism and HPR. CONCLUSION: We propose that PON1 p.Q192R is a potentially useful marker for CAD susceptibility in the Colombian population and lacks association with HPR under clopidogrel treatment.


Assuntos
Arildialquilfosfatase , Doença da Artéria Coronariana , Arildialquilfosfatase/genética , Clopidogrel/uso terapêutico , Colômbia/epidemiologia , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Genótipo , Humanos , Inibidores da Agregação Plaquetária/uso terapêutico
17.
Annu Rev Anim Biosci ; 8: 47-69, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31525067

RESUMO

Fish show extraordinary sexual plasticity, changing sex naturally as part of their life cycle or reversing sex because of environmental stressors. This plasticity shows that sexual fate is not an irreversible process but the result of an ongoing tug-of-war for supremacy between male and female signaling networks. The behavioral, gonadal, and morphological changes involved in this process are well described, yet the molecular events that underpin those changes remain poorly understood. Epigenetic modifications emerge as a critical link between environmental stimuli, the onset of sex change, and subsequent maintenance of sexual phenotype. Here we synthesize current knowledge of sex change, focusing on the genetic and epigenetic processes that are likely involved in the initiation and regulation of sex change. We anticipate that better understanding of sex change in fish will shed new light on sex determination and development in vertebrates and on how environmental perturbations affect sexual fate.


Assuntos
Epigênese Genética , Peixes/genética , Processos de Determinação Sexual/genética , Adaptação Fisiológica , Animais , Feminino , Peixes/fisiologia , Organismos Hermafroditas/genética , Masculino , Processos de Determinação Sexual/fisiologia
18.
Essays Biochem ; 63(6): 649-661, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31755927

RESUMO

Cytosine methylation is a DNA modification that is critical for vertebrate development and provides a plastic yet stable information module in addition to the DNA code. DNA methylation memory establishment, maintenance and erasure is carefully balanced by molecular machinery highly conserved among vertebrates. In mammals, extensive erasure of epigenetic marks, including 5-methylcytosine (5mC), is a hallmark of early embryo and germline development. Conversely, global cytosine methylation patterns are preserved in at least some non-mammalian vertebrates over comparable developmental windows. The evolutionary mechanisms which drove this divergence are unknown, nevertheless a direct consequence of retaining epigenetic memory in the form of 5mC is the enhanced potential for transgenerational epigenetic inheritance (TEI). Given that DNA methylation dynamics remains underexplored in most vertebrate lineages, the extent of information transferred to offspring by epigenetic modification might be underestimated.


Assuntos
Metilação de DNA/fisiologia , DNA/metabolismo , Epigênese Genética/fisiologia , Animais , Embrião de Mamíferos/fisiologia , Embrião não Mamífero/fisiologia , Gametogênese/fisiologia , Genoma/fisiologia , Humanos
19.
Curr Top Dev Biol ; 134: 71-117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30999982

RESUMO

Sexual fate can no longer be considered an irreversible deterministic process that once established during early embryonic development, plays out unchanged across an organism's life. Rather, it appears to be a dynamic process, with sexual phenotype determined through an ongoing battle for supremacy between antagonistic male and female developmental pathways. That sexual fate is not final and is actively regulated via the suppression or activation of opposing genetic networks creates the potential for flexibility in sexual phenotype in adulthood. Such flexibility is seen in many fish, where sex change is a usual and adaptive part of the life cycle. Many fish are sequential hermaphrodites, beginning life as one sex and changing sometime later to the other. Sequential hermaphrodites include species capable of female-to-male (protogynous), male-to-female (protandrous), or bidirectional (serial) sex change. These natural forms of sex change involve coordinated transformations across multiple biological systems, including behavioral, anatomical, neuroendocrine and molecular axes. Here we review the biological processes underlying this amazing transformation, focusing particularly on the molecular aspects, where new genomic technologies are beginning to help us understand how sex change is initiated and regulated at the molecular level.


Assuntos
Evolução Biológica , Transtornos do Desenvolvimento Sexual/veterinária , Peixes/fisiologia , Organismos Hermafroditas , Modelos Biológicos , Desenvolvimento Sexual/fisiologia , Animais , Fenótipo
20.
Nat Commun ; 10(1): 3053, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311924

RESUMO

The germline is the only cellular lineage capable of transferring genetic information from one generation to the next. Intergenerational transmission of epigenetic memory through the germline, in the form of DNA methylation, has been proposed; however, in mammals this is largely prevented by extensive epigenetic erasure during germline definition. Here we report that, unlike mammals, the continuously-defined 'preformed' germline of zebrafish does not undergo genome-wide erasure of DNA methylation during development. Our analysis also uncovers oocyte-specific germline amplification and demethylation of an 11.5-kb repeat region encoding 45S ribosomal RNA (fem-rDNA). The peak of fem-rDNA amplification coincides with the initial expansion of stage IB oocytes, the poly-nucleolar cell type responsible for zebrafish feminisation. Given that fem-rDNA overlaps with the only zebrafish locus identified thus far as sex-linked, we hypothesise fem-rDNA expansion could be intrinsic to sex determination in this species.


Assuntos
Metilação de DNA/fisiologia , DNA Ribossômico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Oócitos/metabolismo , Peixe-Zebra/fisiologia , Animais , Desmetilação , Epigênese Genética/fisiologia , Feminino , Masculino , RNA Ribossômico/genética , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA