RESUMO
The French Society of Medicinal Chemistry or " Société de Chimie Thérapeutique " (SCT) was founded in 1966. Since its inception, its mission has been to promote knowledge in the main fields of pharmaceutical research and development, in particular the research and validation of biological targets of therapeutic interest, the screening, design and optimization of drug candidates, chemical biology, medicinal chemistry, pharmacokinetics, metabolism and toxicity. Since 1964, the Society has organized an annual international congress (RICT), and later thematic days for young researchers and workshops on specific topics. The SCT is also a member of the European Federation for Medicinal Chemistry (EFMC) and organized the International Symposium on Medicinal Chemistry (ISMC) in Nice in 2022. Several new trends can be identified in the activities of the SCT, such as the organization of regular webinars, but also the recent creation of the Young MedChem Forum, as well as the distribution of a newsletter reporting scientific achievements in the French community and abroad, and an improved presence on social networks. These trends are in line with the current changes in the field in terms of scientific progress, means of communication in the community and with the public and inclusiveness.
Assuntos
Química Farmacêutica , Humanos , França , História do Século XXI , História do Século XX , Sociedades Científicas , Congressos como AssuntoRESUMO
The European Lead Factory (ELF) is a consortium of universities and small and medium-sized enterprises (SMEs) dedicated to drug discovery, and the pharmaceutical industry. This unprecedented consortium provides high-throughput screening, triage, and hit validation, including to non-consortium members. The ELF library was created through a novel compound-sharing model between nine pharmaceutical companies and expanded through library synthesis by chemistry-specialized SMEs. The library has been screened against â¼270 different targets and 15 phenotypic assays, and hits have been developed to form the basis of patents and spin-off companies. Here, we review the outcome of screening campaigns of the ELF, including the performance and physicochemical properties of the library, identification of possible frequent hitter compounds, and the effectiveness of the compound-sharing model.
Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Indústria Farmacêutica , UniversidadesRESUMO
Affinity selection-mass spectrometry (AS-MS) is a high-throughput screening (HTS) technique for drug discovery that enables rapid screening of large collections of compounds to identify ligands for a specific biomolecular target. AS-MS is a binding assay that is insensitive to the functional effects a ligand might have, which is important because it lets us identify novel ligands irrespective of their binding site. This approach is gaining popularity, notably due to its role in the emergence of useful agents for targeted protein degradation. This Perspective highlights the use of AS-MS techniques to explore broad chemical space and identify small-molecule ligands for biological targets that have proven challenging to address with other screening paradigms. We present chemical structures of reported AS-MS hits to illustrate the potential of this screening approach to deliver high-quality hits for further optimization. AS-MS has, thus, evolved from being an infrequent alternative to traditional HTS or DNA-encoded library strategies to now firmly establishing itself as a HTS approach for drug discovery.
RESUMO
Through the European Lead Factory model, industry-standard high-throughput screening and hit validation are made available to academia, small and medium-sized enterprises, charity organizations, patient foundations, and participating pharmaceutical companies. The compound collection used for screening is built from a unique diversity of sources. It brings together compounds from companies with different therapeutic area heritages and completely new compounds from library synthesis. This generates structural diversity and combines molecules with complementary physicochemical properties. In 2019, the screening library was updated to enable another 5â¯years of running innovative drug discovery projects. Here, we investigate the physicochemical and diversity properties of the updated compound collection. We show that it is highly diverse, drug-like, and complementary to commercial screening libraries.
Assuntos
Descoberta de Drogas/métodos , Indústria Farmacêutica/métodos , Ensaios de Triagem em Larga Escala/métodos , Europa (Continente) , Humanos , Preparações Farmacêuticas/química , Bibliotecas de Moléculas PequenasRESUMO
The introduction of high-throughput synthesis and combinatorial chemistry has precipitated a global decline in the screening of natural products by the pharmaceutical industry. Some companies terminated their natural products program, despite the unproven success of the new technologies. This was a premature decision, as natural products have a long history of providing important medicinal agents. Furthermore, they occupy a complementary region of chemical space compared with the typical synthetic compound library. For these reasons, the interest in natural products has been rekindled. Various approaches have evolved that combine the power of natural products and organic chemistry, ranging from the combinatorial total synthesis of analogues to the exploration of natural product scaffolds and the design of completely unnatural molecules that resemble natural products in their molecular characteristics.
Assuntos
Produtos Biológicos/síntese química , Química Orgânica/tendências , Técnicas de Química Combinatória/tendências , Produtos Biológicos/farmacologia , Química Orgânica/economia , Técnicas de Química Combinatória/economia , Técnicas de Química Combinatória/métodos , Bases de Dados Factuais , Desenho de Fármacos , Bibliotecas , Relação Estrutura-AtividadeRESUMO
For the first time, intramolecular allylic amination was conducted using rhodium(III) according to an "inner-sphere" type mechanism with amines activated by only one electron-withdrawing group. The activation of C(sp(3))-H bonds was chemoselective and allows the access to a variety of substituted cyclic amines such as pyrrolidines and piperidines.