RESUMO
We assess the magnetic field configuration in modern fusion devices by comparing experiments with the same heating power, between a stellarator and a heliotron. The key role of turbulence is evident in the optimized stellarator, while neoclassical processes largely determine the transport in the heliotron device. Gyrokinetic simulations elucidate the underlying mechanisms promoting stronger ion scale turbulence in the stellarator. Similar plasma performances in these experiments suggests that neoclassical and turbulent transport should both be optimized in next step reactor designs.
RESUMO
The isotope effect on energy confinement time and thermal transport has been investigated for plasmas confined by a stellarator-heliotron magnetic field. This is the first detailed assessment of an isotope effect in a stellarator heliotron. Hydrogen and deuterium plasmas heated by neutral beam injection on the Large Helical Device have exhibited no significant dependence on the isotope mass in thermal energy confinement time, which is not consistent with the simple gyro-Bohm model. A comparison of thermal diffusivity for dimensionally similar hydrogen and deuterium plasmas in terms of the gyroradius, collisionality, and thermal pressure has clearly shown robust confinement improvement in deuterium to compensate for the unfavorable mass dependence predicted by the gyro-Bohm model.
RESUMO
The resistive interchange mode destabilized by the resonant interaction with the trapped energetic ions is fully suppressed when the injected power of electron cyclotron heating exceeds a certain threshold. It is shown for the first time that the complete stabilization of the energetic-particle-driven mode without relaxing the energetic particle (EP) pressure gradient is possible by reducing the radial width of the eigenmodes δ_{w}, especially when δ_{w} narrows to a small enough value relative to the finite orbit width of EP.
RESUMO
Abrupt and strong excitation of a mode has been observed when the frequency of a chirping energetic-particle driven geodesic acoustic mode (EGAM) reaches twice the geodesic acoustic mode (GAM) frequency. The frequency of the secondary mode is the GAM frequency, which is a half-frequency of the primary EGAM. Based on the analysis of spatial structures, the secondary mode is identified as a GAM. The phase relation between the secondary mode and the primary EGAM is locked, and the evolution of the growth rate of the secondary mode indicates nonlinear excitation. The results suggest that the primary mode (EGAM) contributes to nonlinear destabilization of a subcritical mode.
RESUMO
In a collisionless plasma, it is known that linearly stable modes can be destabilized (subcritically) by the presence of structures in phase space. However, nonlinear growth requires the presence of a seed structure with a relatively large threshold in amplitude. We demonstrate that, in the presence of another, linearly unstable (supercritical) mode, wave-wave coupling can provide a seed, which is significantly below the threshold, but can still grow by (and only by) the collaboration of fluid and kinetic nonlinearities. By modeling the subcritical mode kinetically, and the impact of the supercritical mode by simple wave-wave coupling equations, it is shown that this new kind of subcritical instability can be triggered, even when the frequency of the supercritical mode is rapidly sweeping. The model is applied to the bursty onset of geodesic acoustic modes in a LHD experiment. The model recovers several key features such as relative amplitude, time scales, and phase relations. It suggests that the strongest bursts are subcritical instabilities, driven by this mechanism of combined fluid and kinetic nonlinearities.
RESUMO
A new bursting m=1/n=1 instability (m,n: poloidal and toroidal mode numbers) with rapid frequency chirping down has been observed for the first time in a helical plasma with intense perpendicular neutral beam injection. This is destabilized in the plasma peripheral region by resonant interaction between helically trapped energetic ions and the resistive interchange mode. A large radial electric field is induced near the edge due to enhanced radial transport of the trapped energetic ions by the mode, and leads to clear change in toroidal plasma flow, suppression of microturbulence, and triggering an improvement of bulk plasma confinement.
RESUMO
A fast-sampling fast-ion D-alpha (F-FIDA) measurement has been developed in the large helical device in order to investigate fast ion dynamics associated with helically trapped fast-ion-driven Magnetohydrodynamic (MHD) bursts. F-FIDA consists of a multi-anode photomultiplier tube (PMT) and achieves a sampling rate of 10 kHz. During the deuterium experiment campaign in 2022, F-FIDA measured the spectrum of perpendicular fast ions, using perpendicular lines of sight. We compared F-FIDA with conventional FIDA, using an electron multiplying charge coupled device, and confirmed that the time-averaged images were generally consistent between the two. The statistical properties of the temporal evolution associated with MHD bursts were analyzed using a conditional sampling technique. The results showed that the PMT signal varied in different spatial and wavelength channels. Although the signal-to-noise ratio was poor and there was room for improvement, it could provide useful information for studies on the phase-space dynamics of fast ions.
RESUMO
Fast ions play a crucial role in plasma heating, and their behavior in the plasma must be accurately understood. A diagnostics method based on charge exchange emission from the n = 4 - 3 transition (λ0 = 468.6 nm) of energetic 3He produced by the deuteron-deuteron reaction has been proposed as a for fast deuterons with energies in the order of MeV. The proposed method has the following advantages: No beam emission interferes with the spectra, the direction of the measuring line of sight, and the injection angle of the diagnostic beam can be freely determined. In previous studies, due to competing bremsstrahlung, it was expected that the proposed method will not be practical in the case of high electron density operation. This paper makes the proposed method available for measurement even at high electron densities by optimizing the measurement line of sight direction and the diagnostic beam incidence angle. This allows an electron density five times larger than the range of applications shown in previous studies. This result will contribute to measure of DT alpha in ITER.
RESUMO
Proton-boron (p11B) fusion is an attractive potential energy source but technically challenging to implement. Developing techniques to realize its potential requires first developing the experimental capability to produce p11B fusion in the magnetically-confined, thermonuclear plasma environment. Here we report clear experimental measurements supported by simulation of p11B fusion with high-energy neutral beams and boron powder injection in a high-temperature fusion plasma (the Large Helical Device) that have resulted in diagnostically significant levels of alpha particle emission. The injection of boron powder into the plasma edge results in boron accumulation in the core. Three 2 MW, 160 kV hydrogen neutral beam injectors create a large population of well-confined, high -energy protons to react with the boron plasma. The fusion products, MeV alpha particles, are measured with a custom designed particle detector which gives a fusion rate in very good relative agreement with calculations of the global rate. This is the first such realization of p11B fusion in a magnetically confined plasma.
RESUMO
Thomson scattering measurements with a high-repetition-rate laser have commenced in the Large Helical Device. As an example of the fast phenomena captured by this diagnostic system, measurements at a 20 kHz repetition-rate in hydrogen pellet-injected plasmas are presented. Signal processing methods for this measurement have been developed and electron temperature profiles with almost 70 spatial points were evaluated at time intervals of 50 [Formula: see text]s. After Raman scattering calibration, electron density profiles were derived. Fast changes in the electron temperature and density profiles within 1 ms were observed.
RESUMO
The fast deuteron (non-Maxwellian component) diagnostic method, which is based on the higher resolution optical spectroscopic measurement, has been developed as a powerful tool. Owing to a decrease in the D-H charge-exchange cross section, the diagnostic ability of conventional optical diagnostic methods should be improved for â¼MeV energy deuterons. Because the 3He-H charge-exchange cross section is much larger than that of D-H in the â¼MeV energy range, the visible light (VIS) spectrum of 3He produced by the dueteron-dueteron (DD) reaction may be a useful tool. Although the density of 3He is small because it is produced via the DD reaction, improvement of the emissivity of the VIS spectrum of 3He can be expected by using a high-energy beam. We evaluate the VIS spectrum of 3He for the cases when a fast deuteron tail is formed and not formed in the ITER-like beam injected deuterium plasma. Even when the beam energy is in the MeV energy range, a large change appears in the half width at half maximum of the VIS spectrum. The emissivity of the VIS spectrum of 3He and the emissivity of bremsstrahlung are compared, and the measurable VIS spectrum is obtained. It is shown that the VIS spectrum of 3He is a useful tool for the MeV beam deuteron tail diagnostics.
RESUMO
Reversed-shear Alfvén eigenmodes were observed for the first time in a helical plasma having negative q0'' (the curvature of the safety factor q at the zero shear layer). The frequency is swept downward and upward sequentially via the time variation in the maximum of q. The eigenmodes calculated by ideal MHD theory are consistent with the experimental data. The frequency sweeping is mainly determined by the effects of energetic ions and the bulk pressure gradient. Coupling of reversed-shear Alfvén eigenmodes with energetic ion driven geodesic acoustic modes generates a multitude of frequency-sweeping modes.
RESUMO
Density distributions of negative hydrogen (H-) ions and negative deuterium (D-) ions were measured with the laser photodetachment method in the extraction region of the negative ion source. The distribution of H- ion density peaks at the center of the ion source, while that of the D- ion shows a flatter profile in the direction parallel to the plasma grid. The positive ion densities of hydrogen and deuterium estimated from the positive saturation current indicate similar profiles with different amounts close to the grid. The difference in the H- ion and D- ion distributions can be explained by the difference in the negative ion yield and the survival probability of the ions due to the isotope effect.
RESUMO
Two new vertical neutron cameras characterized by high detection efficiency were developed on the Large Helical Device in order to observe poloidal structures of helically trapped beam ions created by the perpendicularly injected positive-ion based neutral beam (P-NB) and are newly operated since 2018. In this work, the neutron fields at the vertical neutron cameras are investigated using the Monte Carlo N-particle transport code to evaluate the performance of its collimators. The results indicate that neutrons are attenuated by the heavy concrete and are well collimated through the collimator to detectors. Neutron spectra at the detector position show over 99% of uncollided 2.45 MeV neutrons. Time evolution of neutron emission profiles during the short pulse of P-NB injection is measured by the vertical neutron cameras. Peaks on the neutron emission profiles corresponding to the helically trapped beam ion are successfully obtained, as designed. The decrease in line integrated neutron flux at the peak positions after the P-NB stops is consistent with the behavior of the total neutron emission rate measured by the neutron flux monitor.
RESUMO
Simultaneous measurement of negative ion source plasma and extracted beam is carried out in order to clarify a key plasma parameter governing the meniscus formation in negative ion sources for fusion. The plasma discharge is performed with various discharge powers at different bias voltages in order to vary the plasma parameters. It is shown that the beam width changes along the same curve with respect to the negative ion density at any bias voltage while it varies along different curves with other plasma parameters depending on the bias voltage. This implies that the mechanism of meniscus formation in negative ion sources could be described along the similar manner as positive ion sources.
RESUMO
A diamond-based neutral particle analyzer (DNPA) array composed of single-crystal chemical vapor deposition (sCVD) diamond detectors was installed on the Large Helical Device (LHD) for measuring the helically trapped energetic particles. In high neutron flux experiments, the unwanted neutron-induced pulse counting rate should be estimated using the neutron diagnostics because a diamond detector is sensitive to neutrons as well as energetic neutral particles. In order to evaluate the quantitative neutron-induced pulse counting rate on the DNPA, the response functions of the sCVD diamond detector for mono-energetic neutrons were obtained using accelerator-based D-D and D-7Li neutron sources in Fast Neutron Laboratory (FNL). As a result of the neutron flux estimation by the Monte Carlo N-Particle code at the NPA position in the LHD and the response function obtained in the FNL experiment, the counting rate of the neutron-induced signal was predicted to be 1.1 kcps for the source neutron emission rate of Sn = 1 × 1015 n/s. In the LHD experiment, the neutron-induced signals were observed by closing the gate valve during the plasma discharges. It is found that the counting rates of the neutron-induced signals proportional to Sn reached 1.1 kcps at Sn = 1 × 1015 n/s. As a result of the quantitative estimation of the neutron-induced signals on the DNPA using other neutron measurements, it has become possible to accurately measure energetic neutral particles in the high neutron flux experiment.
RESUMO
Second deuterium operation of the negative ion based neutral beam injector was performed in 2018 in the large helical device. The electron and ion current ratio improves to Ie/Iacc(D) = 0.31 using the short extraction gap distance of 7 mm between the plasma grid (PG) and the extraction grid (EG). The strength of the magnetic field by the electron deflection magnet installed in the EG increases by 17% at the PG ingress surface, which effectively reduces the electron component in the negative ion rich plasma in the vicinity of PG apertures. The reduction of the electron current made it possible to operate at a high power arc discharge and beam extraction. Then, the deuterium negative ion current increases to 55.4 A with the averaged current density of 233 A/m2. The thermal load on the EG using 7 mm gap distance is 0.6 times smaller than the thermal load using a 8 mm gap caused by the reduction of coextracted electron current. The injection beam power increases to 2.9 MW in the beam line BL3, and the total beam injection power increases to 7 MW by three beam lines in the second deuterium campaign.
RESUMO
To investigate a Cs behavior, optical diagnostic tools have been installed in the large negative ion source, an arc discharge used at large helical device neutral beam injector. A large Cs sputtering is observed during beam extraction due to the backstreaming H(+) ions. Distribution of Cs(+) light is uniform in the case of a balanced arc discharge, but large increase of Cs(+) light during beam extraction is observed in a nonuniform arc discharge. Controlling of the discharge uniformity is effective to reduce the local heat loading from the backstreaming H(+) ions at the backplate of ion source.
RESUMO
The beam profiles, port-through, rates and injection powers obtained with an improved accelerator with the multislot grounded grid are described. The accelerator has a combination of a steering grid with racetrack shaped aperture and multislot grounded grid to improve the beam optics. The optimal beam optics is obtained at the voltage ratio of 16.5-16.8, and the profiles are well fit by superposing multibeamlets with the divergent angles of 5.0 and 7.2 mrad along the direction parallel to the long and short axes of the slots of grounded grid. By adopting the racetrack shaped steering grid, the port-through rate increases from 34% to 38%, and the maximum injection power reaches 6 MW/187 keV.
RESUMO
In the large area negative ion source for the LHD negative-ion-(H(-))-based neutral beam system, (I) we used the spectrometer to measure caesium lines in the source plasma during beam shots. (II) With Doppler-shifted measurements, the H(alpha) line at three different locations along the beam as well as the spectrum profile for cases of different plasma grid areas. (III) Caesium deposition monitor with a high speed shutter was tested to measure the weight of the deposited Cs layer. In the observation, cleaner spectra of Doppler-shifted H(alpha) line with only a small level of background light were obtained at a new observation port which viewed the blueshifted light in the drift region after the accelerator of a LHD ion source. Both the amounts of Cs I (852 nm, neutral Cs(0)) and Cs II (522 nm, Cs(+)) in the source plasma light rose sharply when beam acceleration began, and continued rising during a 10 s pulse. It was thought that this was because the cesium was evaporated/sputtered from the source back plate by the back-streaming positive ions. Cs deposition rate to the crystal sensor measured by adjusting the shutter open time was evaluated to be 2.9 nanograms/s cm(2) for preliminary testing. More neutral Cs tended to be evolved in the source after arc discharge. Much Cs could be consumed in a high rate-pulsed operation (such as LHD source).