Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(2): 028301, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39073937

RESUMO

Kinetic traps are a notorious problem in equilibrium statistical mechanics, where temperature quenches ultimately fail to bring the system to low energy configurations. Using multifarious self-assembly as a model system, we introduce a mechanism to escape kinetic traps by utilizing nonreciprocal interactions between components. Introducing nonequilibrium effects offered by broken action-reaction symmetry in the system pushes the trajectory of the system out of arrested dynamics. The dynamics of the model is studied using tools from the physics of interfaces and defects. Our proposal can find applications in self-assembly, glassy systems, and systems with arrested dynamics to facilitate escape from local minima in rough energy landscapes.

2.
Phys Rev Lett ; 121(9): 098301, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230906

RESUMO

We show that the community structure of a network can be used as a coarse version of its embedding in a hidden space with hyperbolic geometry. The finding emerges from a systematic analysis of several real-world and synthetic networks. We take advantage of the analogy for reinterpreting results originally obtained through network hyperbolic embedding in terms of community structure only. First, we show that the robustness of a multiplex network can be controlled by tuning the correlation between the community structures across different layers. Second, we deploy an efficient greedy protocol for network navigability that makes use of routing tables based on community structure.


Assuntos
Redes Comunitárias , Modelos Teóricos , Algoritmos , Características de Residência
3.
ACS Nano ; 18(23): 14791-14840, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814908

RESUMO

We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.

4.
Nat Nanotechnol ; 18(1): 79-85, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36509920

RESUMO

A hallmark of living systems is the ability to employ a common set of building blocks that can self-organize into a multitude of different structures. This capability can only be afforded in non-equilibrium conditions, as evident from the energy-consuming nature of the plethora of such dynamical processes. To achieve automated dynamical control of such self-assembled structures and transitions between them, we need to identify the fundamental aspects of non-equilibrium dynamics that can enable such processes. Here we identify programmable non-reciprocal interactions as a tool to achieve such functionalities. The design rule is composed of reciprocal interactions that lead to the equilibrium assembly of the different structures, through a process denoted as multifarious self-assembly, and non-reciprocal interactions that give rise to non-equilibrium dynamical transitions between the structures. The design of such self-organized shape-shifting structures can be implemented at different scales, from nucleic acids and peptides to proteins and colloids.

5.
Phys Rev E ; 100(1-1): 010401, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499795

RESUMO

Experimental and computational studies provide compelling evidence that neuronal systems are characterized by power-law distributions of neuronal avalanche sizes. This fact is interpreted as an indication that these systems are operating near criticality, and, in turn, typical properties of critical dynamical processes, such as optimal information transmission and stability, are attributed to neuronal systems. The purpose of this Rapid Communication is to show that the presence of power-law distributions for the size of neuronal avalanches is not a sufficient condition for the system to operate near criticality. Specifically, we consider a simplistic model of neuronal dynamics on networks and show that the degree distribution of the underlying neuronal network may trigger power-law distributions for neuronal avalanches even when the system is not in its critical regime. To certify and explain our findings we develop an analytical approach based on percolation theory and branching processes techniques.


Assuntos
Modelos Neurológicos , Neurônios/citologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia
6.
Nat Commun ; 8(1): 1540, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29147014

RESUMO

Optimal percolation is the problem of finding the minimal set of nodes whose removal from a network fragments the system into non-extensive disconnected clusters. The solution to this problem is important for strategies of immunization in disease spreading, and influence maximization in opinion dynamics. Optimal percolation has received considerable attention in the context of isolated networks. However, its generalization to multiplex networks has not yet been considered. Here we show that approximating the solution of the optimal percolation problem on a multiplex network with solutions valid for single-layer networks extracted from the multiplex may have serious consequences in the characterization of the true robustness of the system. We reach this conclusion by extending many of the methods for finding approximate solutions of the optimal percolation problem from single-layer to multiplex networks, and performing a systematic analysis on synthetic and real-world multiplex networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA