Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Am Chem Soc ; 146(1): 1026-1034, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117539

RESUMO

Graphene nanoribbons (GNRs) have garnered significant interest due to their highly customizable physicochemical properties and potential utility in nanoelectronics. Besides controlling widths and edge structures, the inclusion of chirality in GNRs brings another dimension for fine-tuning their optoelectronic properties, but related studies remain elusive owing to the absence of feasible synthetic strategies. Here, we demonstrate a novel class of cove-edged chiral GNRs (CcGNRs) with a tunable chiral vector (n,m). Notably, the bandgap and effective mass of (n,2)-CcGNR show a distinct positive correlation with the increasing value of n, as indicated by theory. Within this GNR family, two representative members, namely, (4,2)-CcGNR and (6,2)-CcGNR, are successfully synthesized. Both CcGNRs exhibit prominently curved geometries arising from the incorporated [4]helicene motifs along their peripheries, as also evidenced by the single-crystal structures of the two respective model compounds (1 and 2). The chemical identities and optoelectronic properties of (4,2)- and (6,2)-CcGNRs are comprehensively investigated via a combination of IR, Raman, solid-state NMR, UV-vis, and THz spectroscopies as well as theoretical calculations. In line with theoretical expectation, the obtained (6,2)-CcGNR possesses a low optical bandgap of 1.37 eV along with charge carrier mobility of ∼8 cm2 V-1 s-1, whereas (4,2)-CcGNR exhibits a narrower bandgap of 1.26 eV with increased mobility of ∼14 cm2 V-1 s-1. This work opens up a new avenue to precisely engineer the bandgap and carrier mobility of GNRs by manipulating their chiral vector.

2.
J Am Chem Soc ; 145(39): 21319-21329, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37729535

RESUMO

In recent years, two-dimensional metal-organic frameworks (2D MOF) have attracted great interest for their ease of synthesis and for their catalytic activities and semiconducting properties. The appeal of these materials is that they are layered and easily exfoliated to obtain a monolayer (or few layer) material with interesting optoelectronic properties. Moreover, they have great potential for CO2 reduction to obtain solar fuels with more than one carbon atom, such as ethylene and ethanol, in addition to methane and methanol. In this paper, we explore how a particular class of 2D MOF based on a phthalocyanine core provides the reactive center for the production of ethylene and ethanol. We examine the reaction mechanism using the new grand canonical potential kinetics (GCP-K) or grand canonical quantum mechanics (GC-QM) computational methodology, which obtains reaction rates at constant applied potential to compare directly with experimental results (rather than at constant electrons as in standard QM). We explain the reaction mechanism underlying the formation of methane and ethylene. Here, the key reaction step is direct coupling of CO into CHO, without the usual rate-determining CO-CO dimerization step observed on Cu metal surfaces. Indeed, the 2D MOF behaves like a single-atom catalyst.

3.
Angew Chem Int Ed Engl ; 62(39): e202309258, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37559432

RESUMO

Nitrogen recovery from wastewater represents a sustainable route to recycle reactive nitrogen (Nr). It can reduce the demand of producing Nr from the energy-extensive Haber-Bosch process and lower the risk of causing eutrophication simultaneously. In this aspect, source-separated fresh urine is an ideal source for nitrogen recovery given its ubiquity and high nitrogen contents. However, current techniques for nitrogen recovery from fresh urine require high energy input and are of low efficiencies because the recovery target, urea, is a challenge to separate. In this work, we developed a novel fresh urine nitrogen recovery treatment process based on modular functionalized metal-organic frameworks (MOFs). Specifically, we employed three distinct modification methods to MOF-808 and developed robust functional materials for urea hydrolysis, ammonium adsorption, and ammonia monitoring. By integrating these functional materials into our newly developed nitrogen recovery treatment process, we achieved an average of 75 % total nitrogen reduction and 45 % nitrogen recovery with a 30-minute treatment of synthetic fresh urine. The nitrogen recovery process developed in this work can serve as a sustainable and efficient nutrient management that is suitable for decentralized wastewater treatment. This work also provides a new perspective of implementing versatile advanced materials for water and wastewater treatment.


Assuntos
Estruturas Metalorgânicas , Nitrogênio , Amônia , Águas Residuárias , Ureia
4.
J Am Chem Soc ; 144(11): 5042-5050, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35189061

RESUMO

Two-dimensional (2D) covalent organic frameworks (COFs) are an emerging class of promising 2D materials with high crystallinity and tunable structures. However, the low electrical conductivity impedes their applications in electronics and optoelectronics. Integrating large π-conjugated building blocks into 2D lattices to enhance efficient π-stacking and chemical doping is an effective way to improve the conductivity of 2D COFs. Herein, two nonplanar 2D COFs with kagome (DHP-COF) and rhombus (c-HBC-COF) lattices have been designed and synthesized from distorted aromatics with different π-conjugated structures (flexible and rigid structure, respectively). DHP-COF shows a highly distorted 2D lattice that hampers stacking, consequently limiting its charge carrier transport properties. Conversely, c-HBC-COF, with distorted although concave-convex self-complementary nodes, shows a less distorted 2D lattice that does not interfere with interlayer π-stacking. Employing time- and frequency-resolved terahertz spectroscopy, we unveil a high charge-carrier mobility up to 44 cm2 V-1 s-1, among the highest reported for 2D COFs.

5.
J Am Chem Soc ; 144(1): 228-235, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962807

RESUMO

Structurally precision graphene nanoribbons (GNRs) are promising candidates for next-generation nanoelectronics due to their intriguing and tunable electronic structures. GNRs with hybrid edge structures often confer them unique geometries associated with exotic physicochemical properties. Herein, a novel type of cove-edged GNRs with periodic short zigzag-edge segments is demonstrated. The bandgap of this GNR family can be tuned using an interplay between the length of the zigzag segments and the distance of two adjacent cove units along the opposite edges, which can be converted from semiconducting to nearly metallic. A family member with periodic cove-zigzag edges based on N = 6 zigzag-edged GNR, namely 6-CZGNR-(2,1), is successfully synthesized in solution through the Scholl reaction of a unique snakelike polymer precursor (10) that is achieved by the Yamamoto coupling of a structurally flexible S-shaped phenanthrene-based monomer (1). The efficiency of cyclodehydrogenation of polymer 10 toward 6-CZGNR-(2,1) is validated by FT-IR, Raman, and UV-vis spectroscopies, as well as by the study of two representative model compounds (2 and 3). Remarkably, the resultant 6-CZGNR-(2,1) exhibits an extended and broad absorption in the near-infrared region with a record narrow optical bandgap of 0.99 eV among the reported solution-synthesized GNRs. Moreover, 6-CZGNR-(2,1) exhibits a high macroscopic carrier mobility of ∼20 cm2 V-1 s-1 determined by terahertz spectroscopy, primarily due to the intrinsically small effective mass (m*e = m*h = 0.17 m0), rendering this GNR a promising candidate for nanoelectronics.

6.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008968

RESUMO

An artificial leaf is a concept that not only replicates the processes taking place during natural photosynthesis but also provides a source of clean, renewable energy. One important part of such a device are molecules that stabilize the connection between the bioactive side and the electrode, as well as tune the electron transfer between them. In particular, nitrilotriacetic acid (NTA) derivatives used to form a self-assembly monolayer chemisorbed on a graphene monolayer can be seen as a prototypical interface that can be tuned to optimize the electron transfer. In the following work, interfaces with modifications of the metal nature, backbone saturation, and surface coverage density are presented by means of theoretical calculations. Effects of the type of the metal and the surface coverage density on the electronic properties are found to be key to tuning the electron transfer, while only a minor influence of backbone saturation is present. For all of the studied interfaces, the charge transfer flow goes from graphene to the SAM. We suggest that, in light of the strength of electron transfer, Co2+ should be considered as the preferred metal center for efficient charge transfer.


Assuntos
Complexos de Coordenação/química , Transporte de Elétrons , Elétrons , Metais/química , Ácido Nitrilotriacético/química , Algoritmos , Fenômenos Químicos , Modelos Teóricos , Estrutura Molecular
7.
Angew Chem Int Ed Engl ; 61(13): e202115389, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-34931418

RESUMO

Electrochemical deposition has emerged as an efficient technique for preparing conjugated polymer films on electrodes. However, this method encounters difficulties in synthesizing crystalline products and controlling their orientation on electrodes. Here we report electrochemical film deposition of a large polycyclic aromatic hydrocarbon. The film is composed of single-crystalline nanorods, in which the molecules adopt a cofacial stacking arrangement along the π-π direction. Film thickness and crystal size can be controlled by electrochemical conditions such as scan rate and electrolyte species, while the choice of anode material determines crystal orientation. The film supports exceptionally efficient migration of both free carriers and excitons: the free carrier mobility reaches over 30 cm2 V-1 s-1 , whereas the excitons are delocalized with a low binding energy of 118.5 meV and a remarkable exciton diffusion length of 45 nm.

8.
J Am Chem Soc ; 143(15): 5654-5658, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33825484

RESUMO

As a new family of semiconductors, graphene nanoribbons (GNRs), nanometer-wide strips of graphene, have appeared as promising candidates for next-generation nanoelectronics. Out-of-plane deformation of π-frames in GNRs brings further opportunities for optical and electronic property tuning. Here we demonstrate a novel fjord-edged GNR (FGNR) with a nonplanar geometry obtained by regioselective cyclodehydrogenation. Triphenanthro-fused teropyrene 1 and pentaphenanthro-fused quateropyrene 2 were synthesized as model compounds, and single-crystal X-ray analysis revealed their helically twisted conformations arising from the [5]helicene substructures. The structures and photophysical properties of FGNR were investigated by mass spectrometry and UV-vis, FT-IR, terahertz, and Raman spectroscopic analyses combined with theoretical calculations.


Assuntos
Grafite/química , Nanoestruturas/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Compostos Policíclicos/química , Pirenos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
9.
Nano Lett ; 20(5): 2993-3002, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32207957

RESUMO

Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.

10.
J Am Chem Soc ; 142(43): 18293-18298, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33078947

RESUMO

Structurally well-defined graphene nanoribbons (GNRs) have emerged as highly promising materials for the next-generation nanoelectronics. The electronic properties of GNRs critically depend on their edge topologies. Here, we demonstrate the efficient synthesis of a curved GNR (cGNR) with a combined cove, zigzag, and armchair edge structure, through bottom-up synthesis. The curvature of the cGNR is elucidated by the corresponding model compounds tetrabenzo[a,cd,j,lm]perylene (1) and diphenanthrene-fused tetrabenzo[a,cd,j,lm]perylene (2), the structures of which are unambiguously confirmed by the X-ray single-crystal analysis. The resultant multi-edged cGNR exhibits a well-resolved absorption at the near-infrared (NIR) region with a maximum peak at 850 nm, corresponding to a narrow optical energy gap of ∼1.22 eV. Employing THz spectroscopy, we disclose a long scattering time of ∼60 fs, corresponding to a record intrinsic charge carrier mobility of ∼600 cm2 V-1 s-1 for photogenerated charge carriers in cGNR.

11.
Molecules ; 25(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957614

RESUMO

The fluorescent molecule diphenylhexatriene (DPH) has been often used in combination with fluorescence anisotropy measurements, yet little is known regarding the non-linear optical properties. In the current work, we focus on them and extend the application to fluorescence, while paying attention to the conformational versatility of DPH when it is embedded in different membrane phases. Extensive hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the influence of the phase- and temperature-dependent lipid environment on the probe. Already, the transition dipole moments and one-photon absorption spectra obtained in the liquid ordered mixture of sphingomyelin (SM)-cholesterol (Chol) (2:1) differ largely from the ones calculated in the liquid disordered DOPC and solid gel DPPC membranes. Throughout the work, the molecular conformation in SM:Chol is found to differ from the other environments. The two-photon absorption spectra and the ones obtained by hyper-Rayleigh scattering depend strongly on the environment. Finally, a stringent comparison of the fluorescence anisotropy decay and the fluorescence lifetime confirm the use of DPH to gain information upon the surrounding lipids and lipid phases. DPH might thus open the possibility to detect and analyze different biological environments based on its absorption and emission properties.


Assuntos
Difenilexatrieno/química , Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Colesterol/química , Polarização de Fluorescência , Conformação Molecular , Simulação de Dinâmica Molecular , Transição de Fase , Esfingomielinas/química , Relação Estrutura-Atividade , Temperatura de Transição
12.
Langmuir ; 35(35): 11471-11481, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31403301

RESUMO

The development of a universal probe to assess the phase of a lipid membrane is one of the most ambitious goals for fluorescence spectroscopy. The ability of a well-known molecule as Laurdan to reach this aim is here exploited as the behavior of the probe is fully characterized in a dipalmitoylphosphatidylcholine (DPPC) solid gel (So) phase by means of molecular dynamics simulations. Laurdan can take two conformations, depending on whether the carbonyl oxygen points toward the ß-position of the naphthalene core (Conf-I) or to the α-position (Conf-II). We observe that Conf-I has an elongated form in this environment, whereas Conf-II takes an L-shape. Interestingly, our theoretical calculations show that these two conformations behave in an opposite way from what is reported in the literature for a DPPC membrane in a liquid disordered (Ld) phase, where Conf-I assumes an L-shape and Conf-II is elongated. Moreover, our results show that in DPPC (So) no intermixing between the conformations is present, whereas it has been seen in a fluid environment such as DOPC (Ld). Through a careful analysis of angle distributions and by means of the rotational autocorrelation function, we predict that the two conformers of Laurdan behave differently in different membrane environments.

13.
Chemistry ; 24(19): 4785-4789, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29405499

RESUMO

The dimerization of a saturated N-heterocyclic carbene (NHC) to tricyclic piperazine in preference to the commonly observed Wanzlick dimerization is presented. Mechanistic investigations revealed that the N-fluorene substituent of the heterocycle is implicated in both ring opening of corresponding carbene dimer and tautomerization of NHC to an azomethine ylide. This has consequences for the fate of the NHC when generated from either an azolinium salt or a pentafluorophenyl adduct. The insights gained permitted the synthesis of a new indenylidene metathesis precatalyst, which exhibits exceptional selectivity and high TONS in self-metathesis of 1-octene.

14.
J Am Chem Soc ; 139(12): 4418-4428, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28252300

RESUMO

The use of hybrid systems for which the change in properties of one component triggers the change in properties of the other is of outmost importance when "on/off" states are needed. For such a reason, azobenzene compounds are one of the most used probes due to their high photoswitching efficiency. In this study, we consider a new derivative of azobenzene interacting with different lipid membrane phases as a versatile fluorescent probe for phase recognition. By means of a multiscale approach, we found that the cis and trans conformers have different positions and orientations in the different lipid membranes (DOPC for the liquid disordered phase and DPPC for the gel phase), and these have a profound effect on the optical properties of the system, for both one and two photon absorption. In fact, we found that the cis state is the "on" state when the probe is inserted into the DOPC membrane, while it is in the "off" state in the DPPC membrane. This behavior enhances the selectivity of this probe for phase recognition, since the different environments will generate different responses on the same conformer of the probe. The same effect is found for the fluorescence anisotropy analysis, for which the trans (cis) isomer in DOPC (DPPC) presents a fast decay time. Due to the "on/off" effect it is possible to screen the different membrane phases via fluorescence decay time analysis, making this new probe versatile for phase detection.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Compostos Azo/química , Corantes Fluorescentes/química , Fosfatidilcolinas/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Processos Fotoquímicos
15.
J Am Chem Soc ; 139(23): 7982-7988, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28525278

RESUMO

The effect of edge engineering of graphene nanoribbons (GNRs) on their ultrafast photoconductivity is investigated. Three different GNRs were fabricated by bottom-up synthesis in the liquid phase, where structure, width, and edge planarity could be controlled chemically at the atomic level. The charge carrier transport in the fabricated GNRs was studied on the ultrafast, sub-picosecond time scale using time-resolved terahertz spectroscopy, giving access to the elementary parameters of carrier conduction. While the variation of the side chains does not alter the photoconductive properties of GNRs, the edge structure has a strong impact on the carrier mobility in GNRs by affecting the carrier momentum scattering rate. Calculations of the ribbon electronic structure and theoretical transport studies show that phonon scattering plays a significant role in microscopic conduction in GNRs with different edge structures. A comparison between theory and experiment indicates that the mean free path of charge carriers in the nanoribbons amounts to typically ∼20 nm.

16.
J Am Chem Soc ; 138(27): 8364-7, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27355697

RESUMO

Total synthetic approaches of fullerenes are the holy grail for organic chemistry. So far, the main attempts have focused on the synthesis of the buckminsterfullerene C60. In contrast, access to subunits of the homologue C70 remains challenging. Here, we demonstrate an efficient bottom-up strategy toward a novel bowl-shaped polycyclic aromatic hydrocarbons (PAH) C34 with two pentagons. This PAH represents a subunit for C70 and of other higher fullerenes. The bowl-shaped structure was unambiguously determined by X-ray crystallography. A bowl-to-bowl inversion for a C70 fragment in solution was investigated by dynamic NMR analysis, showing a bowl-to-bowl inversion energy (ΔG(⧧)) of 16.7 kcal mol(-1), which is further corroborated by DFT calculations.

17.
J Am Chem Soc ; 138(8): 2602-8, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26859522

RESUMO

Cyclodehydrogenation is a versatile reaction that has enabled the syntheses of numerous polycyclic aromatic hydrocarbons (PAHs). We now describe a unique Scholl reaction of 6,7,13,14-tetraarylbenzo[k]tetraphene, which "unexpectedly" forms five-membered rings accompanying highly selective 1,2-shift of aryl groups. The geometric and optoelectronic nature of the resulting bistetracene analogue with five-membered rings is comprehensively investigated by single-crystal X-ray, NMR, UV-vis absorption, and cyclic voltammetry analyses. Furthermore, a possible mechanism is proposed to account for the selective five-membered-ring formation with the rearrangement of the aryl groups, which can be rationalized by density functional theory (DFT) calculations. The theoretical results suggest that the formation of the bistetracene analogue with five-membered rings is kinetically controlled while an "expected" product with six-membered rings is thermodynamically more favored. These experimental and theoretical results provide further insights into the still controversial mechanism of the Scholl reaction as well as open up an unprecedented entry to extend the variety of PAHs by programing otherwise unpredictable rearrangements during the Scholl reaction.

18.
Angew Chem Int Ed Engl ; 54(10): 2927-31, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25614119

RESUMO

The chemical nature of the edge periphery essentially determines the physical properties of graphene. As a molecular-level model system, large polycyclic aromatic hydrocarbons, that is, so-called nanographenes, can be chemically modified through either edge functionalization or doping with heteroatoms. Although the synthetic methods for edge substitution are well-developed, incorporation with heteroatoms by the bay annulation of large PAHs remains an enormous challenge. In this study, we present a feasible peripheral sulfur annulation of hexa-peri-hexabenzocoronene (HBC) by thiolation of perchlorinated HBC. The tri-sulfur-annulated HBC and di-sulfur-annulated HBC decorated with phenylthio groups were obtained and characterized by X-ray diffraction, revealing their distinct sulfur-annulated peripheral structure. Associated with theoretical calculations, we propose that the regioselective sulfur annulation results from the minimization of strain in the aromatic backbone. We further demonstrate the structure-correlated property modulation by sulfur annulation, manifested by a decrease in band gap and tunable redox activity.

19.
Phys Chem Chem Phys ; 16(7): 2866-73, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24384781

RESUMO

Many recent experimental studies have demonstrated that the deposition of self-assembled monolayers on a metal electrode can significantly modulate its work function and hence charge injection properties in organic-based devices. In this context, we model here by means of Density Functional Theory (DFT) calculations the deposition of long saturated and partially fluorinated alkanethiol chains on the gold (111) surface and explore the shift in the work function while changing the size and degree of fluorination of the molecular backbone in order to contribute to the definition of design rules. Among all the derivatization schemes, only the introduction of a terminal fluoromethyl unit leads to an appreciable change in the work function shift, further accompanied by a reversal of its sign. The results show pronounced odd-even effects with different origins.

20.
J Photochem Photobiol B ; 250: 112833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141326

RESUMO

The solvatochromic dye Laurdan is widely used in sensing the lipid packing of both model and biological membranes. The fluorescence emission maximum shifts from about 440 nm (blue channel) in condensed membranes (So) to about 490 nm (green channel) in the liquid-crystalline phase (Lα). Although the fluorescence intensity based generalized polarization (GP) is widely used to characterize lipid membranes, the fluorescence lifetime of Laurdan, in the blue and the green channel, is less used for that purpose. Here we explore the correlation between GP and fluorescence lifetimes by spectroscopic measurements on the So and Lα phases of large unilamellar vesicles of DMPC and DPPC. A positive correlation between GP and the lifetimes is observed in each of the optical channels for the two lipid phases. Microfluorimetric determinations on giant unilamellar vesicles of DPPC and DOPC at room temperature are performed under linearly polarized two-photon excitation to disentangle possible subpopulations of Laurdan at a scale below the optical resolution. Fluorescence intensities, GP and fluorescence lifetimes depend on the angle between the orientation of the linear polarization of the excitation light and the local normal to the membrane of the optical cross-section. This angular variation depends on the lipid phase and the emission channel. GP and fluorescence intensities in the blue and green channel in So and in the blue channel in Lα exhibit a minimum near 90o. Surprisingly, the intensity in the green channel in Lα reaches a maximum near 90o. The fluorescence lifetimes in the two optical channels also reach a pronounced minimum near 90o in So and Lα, apart from the lifetime in the blue channel in Lα where the lifetime is short with minimal angular variation. To our knowledge, these experimental observations are the first to demonstrate the existence of a bent conformation of Laurdan in lipid membranes, as previously suggested by molecular dynamics calculations.


Assuntos
Lauratos , Lipossomas Unilamelares , Membrana Celular , Lauratos/análise , Lauratos/química , 2-Naftilamina/química , Corantes Fluorescentes/química , Polarização de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA