Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 149(6): 1257-68, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682248

RESUMO

Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a function for Thbs as ER-resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury, whereas Thbs4(-/-) mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. Thbs bind the ER lumenal domain of activating transcription factor 6α (Atf6α) to promote its nuclear shuttling. Thbs4(-/-) mice showed blunted activation of Atf6α and other ER stress-response factors with injury, and Thbs4-mediated protection was lost upon Atf6α deletion. Hence, Thbs can function inside the cell during disease remodeling to augment ER function and protect through a mechanism involving regulation of Atf6α.


Assuntos
Estresse do Retículo Endoplasmático , Transdução de Sinais , Trombospondinas/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Trombospondinas/genética
2.
Circ Res ; 126(7): 907-922, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32081062

RESUMO

RATIONALE: Compromised protein quality control can result in proteotoxic intracellular protein aggregates in the heart, leading to cardiac disease and heart failure. Defining the participants and understanding the underlying mechanisms of cardiac protein aggregation is critical for seeking therapeutic targets. We identified Ube2v1 (ubiquitin-conjugating enzyme E2 variant 1) in a genome-wide screen designed to identify novel effectors of the aggregation process. However, its role in the cardiomyocyte is undefined. OBJECTIVE: To assess whether Ube2v1 regulates the protein aggregation caused by cardiomyocyte expression of a mutant αB crystallin (CryABR120G) and identify how Ube2v1 exerts its effect. METHODS AND RESULTS: Neonatal rat ventricular cardiomyocytes were infected with adenoviruses expressing either wild-type CryAB (CryABWT) or CryABR120G. Subsequently, loss- and gain-of-function experiments were performed. Ube2v1 knockdown decreased aggregate accumulation caused by CryABR120G expression. Overexpressing Ube2v1 promoted aggregate formation in CryABWT and CryABR120G-expressing neonatal rat ventricular cardiomyocytes. Ubiquitin proteasome system performance was analyzed using a ubiquitin proteasome system reporter protein. Ube2v1 knockdown improved ubiquitin proteasome system performance and promoted the degradation of insoluble ubiquitinated proteins in CryABR120G cardiomyocytes but did not alter autophagic flux. Lys (K) 63-linked ubiquitination modulated by Ube2v1 expression enhanced protein aggregation and contributed to Ube2v1's function in regulating protein aggregate formation. Knocking out Ube2v1 exclusively in cardiomyocytes by using AAV9 (adeno-associated virus 9) to deliver multiplexed single guide RNAs against Ube2v1 in cardiac-specific Cas9 mice alleviated CryABR120G-induced protein aggregation, improved cardiac function, and prolonged lifespan in vivo. CONCLUSIONS: Ube2v1 plays an important role in protein aggregate formation, partially by enhancing K63 ubiquitination during a proteotoxic stimulus. Inhibition of Ube2v1 decreases CryABR120G-induced aggregate formation through enhanced ubiquitin proteasome system performance rather than autophagy and may provide a novel therapeutic target to treat cardiac proteinopathies.


Assuntos
Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregação Patológica de Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/metabolismo , Agregação Patológica de Proteínas/genética , Ratos , Fatores de Transcrição/genética , Enzimas de Conjugação de Ubiquitina/genética , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
3.
Circ Res ; 123(12): 1285-1297, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30566042

RESUMO

RATIONALE: Hypertrophic cardiomyopathy occurs with a frequency of about 1 in 500 people. Approximately 30% of those affected carry mutations within the gene encoding cMyBP-C (cardiac myosin binding protein C). Cardiac stress, as well as cMyBP-C mutations, can trigger production of a 40kDa truncated fragment derived from the amino terminus of cMyBP-C (Mybpc340kDa). Expression of the 40kDa fragment in mouse cardiomyocytes leads to hypertrophy, fibrosis, and heart failure. Here we use genetic approaches to establish a causal role for excessive myofibroblast activation in a slow, progressive genetic cardiomyopathy-one that is driven by a cardiomyocyte-intrinsic genetic perturbation that models an important human disease. OBJECTIVE: TGFß (transforming growth factor-ß) signaling is implicated in a variety of fibrotic processes, and the goal of this study was to define the role of myofibroblast TGFß signaling during chronic Mybpc340kDa expression. METHODS AND RESULTS: To specifically block TGFß signaling only in the activated myofibroblasts in Mybpc340kDa transgenic mice and quadruple compound mutant mice were generated, in which the TGFß receptor II (TßRII) alleles ( Tgfbr2) were ablated using the periostin ( Postn) allele, myofibroblast-specific, tamoxifen-inducible Cre ( Postnmcm) gene-targeted line. Tgfbr2 was ablated either early or late during pathological fibrosis. Early myofibroblast-specific Tgfbr2 ablation during the fibrotic response reduced cardiac fibrosis, alleviated cardiac hypertrophy, preserved cardiac function, and increased lifespan of the Mybpc340kDa transgenic mice. Tgfbr2 ablation late in the pathological process reduced cardiac fibrosis, preserved cardiac function, and prolonged Mybpc340kDa mouse survival but failed to reverse cardiac hypertrophy. CONCLUSIONS: Fibrosis and cardiac dysfunction induced by cardiomyocyte-specific expression of Mybpc340kDa were significantly decreased by Tgfbr2 ablation in the myofibroblast. Surprisingly, preexisting fibrosis was partially reversed if the gene was ablated subsequent to fibrotic deposition, suggesting that continued TGFß signaling through the myofibroblasts was needed to maintain the heart fibrotic response to a chronic, disease-causing cardiomyocyte-only stimulus.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Proteínas de Transporte/genética , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Animais , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Camundongos , Mutação , Receptor do Fator de Crescimento Transformador beta Tipo II/genética
4.
Proc Natl Acad Sci U S A ; 113(35): E5182-91, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27503873

RESUMO

Cardiopulmonary complications are the leading cause of mortality in sickle cell anemia (SCA). Elevated tricuspid regurgitant jet velocity, pulmonary hypertension, diastolic, and autonomic dysfunction have all been described, but a unifying pathophysiology and mechanism explaining the poor prognosis and propensity to sudden death has been elusive. Herein, SCA mice underwent a longitudinal comprehensive cardiac analysis, combining state-of-the-art cardiac imaging with electrocardiography, histopathology, and molecular analysis to determine the basis of cardiac dysfunction. We show that in SCA mice, anemia-induced hyperdynamic physiology was gradually superimposed with restrictive physiology, characterized by progressive left atrial enlargement and diastolic dysfunction with preserved systolic function. This phenomenon was absent in WT mice with experimentally induced chronic anemia of similar degree and duration. Restrictive physiology was associated with microscopic cardiomyocyte loss and secondary fibrosis detectable as increased extracellular volume by cardiac-MRI. Ultrastructural mitochondrial changes were consistent with severe chronic hypoxia/ischemia and sarcomere diastolic-length was shortened. Transcriptome analysis revealed up-regulation of genes involving angiogenesis, extracellular-matrix, circadian-rhythm, oxidative stress, and hypoxia, whereas ion-channel transport and cardiac conduction were down-regulated. Indeed, progressive corrected QT prolongation, arrhythmias, and ischemic changes were noted in SCA mice before sudden death. Sudden cardiac death is common in humans with restrictive cardiomyopathies and long QT syndromes. Our findings may thus provide a unifying cardiac pathophysiology that explains the reported cardiac abnormalities and sudden death seen in humans with SCA.


Assuntos
Anemia Falciforme/fisiopatologia , Cardiomiopatias/fisiopatologia , Insuficiência Cardíaca Diastólica/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Anemia Falciforme/complicações , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Morte Súbita Cardíaca/etiologia , Modelos Animais de Doenças , Eletrocardiografia/métodos , Perfilação da Expressão Gênica , Insuficiência Cardíaca Diastólica/etiologia , Insuficiência Cardíaca Diastólica/genética , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia
5.
Proc Natl Acad Sci U S A ; 111(48): E5178-86, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404307

RESUMO

Proteinopathy causes cardiac disease, remodeling, and heart failure but the pathological mechanisms remain obscure. Mutated αB-crystallin (CryAB(R120G)), when expressed only in cardiomyocytes in transgenic (TG) mice, causes desmin-related cardiomyopathy, a protein conformational disorder. The disease is characterized by the accumulation of toxic misfolded protein species that present as perinuclear aggregates known as aggresomes. Previously, we have used the CryAB(R120G) model to determine the underlying processes that result in these pathologic accumulations and to explore potential therapeutic windows that might be used to decrease proteotoxicity. We noted that total ventricular protein is hypoacetylated while hyperacetylation of α-tubulin, a substrate of histone deacetylase 6 (HDAC6) occurs. HDAC6 has critical roles in protein trafficking and autophagy, but its function in the heart is obscure. Here, we test the hypothesis that tubulin acetylation is an adaptive process in cardiomyocytes. By modulating HDAC6 levels and/or activity genetically and pharmacologically, we determined the effects of tubulin acetylation on aggregate formation in CryAB(R120G) cardiomyocytes. Increasing HDAC6 accelerated aggregate formation, whereas siRNA-mediated knockdown or pharmacological inhibition ameliorated the process. HDAC inhibition in vivo induced tubulin hyperacetylation in CryAB(R120G) TG hearts, which prevented aggregate formation and significantly improved cardiac function. HDAC6 inhibition also increased autophagic flux in cardiomyocytes, and increased autophagy in the diseased heart correlated with increased tubulin acetylation, suggesting that autophagy induction might underlie the observed cardioprotection. Taken together, our data suggest a mechanistic link between tubulin hyperacetylation and autophagy induction and points to HDAC6 as a viable therapeutic target in cardiovascular disease.


Assuntos
Adaptação Fisiológica , Autofagia , Miocárdio/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Coração/efeitos dos fármacos , Coração/fisiologia , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Immunoblotting , Imuno-Histoquímica , Camundongos Transgênicos , Microscopia Eletrônica , Mutação , Miocárdio/citologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cultura Primária de Células , Ratos Sprague-Dawley , Vorinostat , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
6.
Pflugers Arch ; 468(10): 1685-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27568194

RESUMO

Cardiac myosin-binding protein C (cMyBP-C) is an integral part of the sarcomeric machinery in cardiac muscle that enables normal function. cMyBP-C regulates normal cardiac contraction by functioning as a brake through interactions with the sarcomere's thick, thin, and titin filaments. cMyBP-C's precise effects as it binds to the different filament systems remain obscure, particularly as it impacts on the myosin heavy chain's head domain, contained within the subfragment 2 (S2) region. This portion of the myosin heavy chain also contains the ATPase activity critical for myosin's function. Mutations in myosin's head, as well as in cMyBP-C, are a frequent cause of familial hypertrophic cardiomyopathy (FHC). We generated transgenic lines in which endogenous cMyBP-C was replaced by protein lacking the residues necessary for binding to S2 (cMyBP-C(S2-)). We found, surprisingly, that cMyBP-C lacking the S2 binding site is incorporated normally into the sarcomere, although systolic function is compromised. We show for the first time the acute and chronic in vivo consequences of ablating a filament-specific interaction of cMyBP-C. This work probes the functional consequences, in the whole animal, of modifying a critical structure-function relationship, the protein's ability to bind to a region of the critical enzyme responsible for muscle contraction, the subfragment 2 domain of the myosin heavy chain. We show that the binding is not critical for the protein's correct insertion into the sarcomere's architecture, but is essential for long-term, normal function in the physiological context of the heart.


Assuntos
Proteínas de Transporte/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Camundongos , Contração Muscular , Mutação , Ligação Proteica , Sarcômeros/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 310(2): H174-87, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26545710

RESUMO

Arrhythmogenic ventricular cardiomyopathy (AVC) is a frequent underlying cause for arrhythmias and sudden cardiac death especially during intense exercise. The mechanisms involved remain largely unknown. The purpose of this study was to investigate how chronic endurance exercise contributes to desmoplakin (DSP) mutation-induced AVC pathogenesis. Transgenic mice with overexpression of desmoplakin, wild-type (Tg-DSP(WT)), or the R2834H mutant (Tg-DSP(R2834H)) along with control nontransgenic (NTg) littermates were kept sedentary or exposed to a daily running regimen for 12 wk. Cardiac function and morphology were analyzed using echocardiography, electrocardiography, histology, immunohistochemistry, RNA, and protein analysis. At baseline, 4-wk-old mice from all groups displayed normal cardiac function. When subjected to exercise, all mice retained normal cardiac function and left ventricular morphology; however, Tg-DSP(R2834H) mutants displayed right ventricular (RV) dilation and wall thinning, unlike NTg and Tg-DSP(WT). The Tg-DSP(R2834H) hearts demonstrated focal fat infiltrations in RV and cytoplasmic aggregations consisting of desmoplakin, plakoglobin, and connexin 43. These aggregates coincided with disruption of the intercalated disks, intermediate filaments, and microtubules. Although Tg-DSP(R2834H) mice already displayed high levels of p-GSK3-ß(Ser9) and p-AKT1(Ser473) under sedentary conditions, decrease of nuclear GSK3-ß and AKT1 levels with reduced p-GSK3-ß(Ser9), p-AKT1(Ser473), and p-AKT1(Ser308) and loss of nuclear junctional plakoglobin was apparent after exercise. In contrast, Tg-DSP(WT) showed upregulation of p-AKT1(Ser473), p-AKT1(Ser308), and p-GSK3-ß(Ser9) in response to exercise. Our data suggest that endurance exercise accelerates AVC pathogenesis in Tg-DSP(R2834H) mice and this event is associated with perturbed AKT1 and GSK3-ß signaling. Our study suggests a potential mechanism-based approach to exercise management in patients with AVC.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/terapia , Desmoplaquinas/genética , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , beta Catenina/genética , beta Catenina/fisiologia , Animais , Displasia Arritmogênica Ventricular Direita/diagnóstico por imagem , Quinase 3 da Glicogênio Sintase/biossíntese , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Testes de Função Cardíaca , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Miocárdio/patologia , Corrida/fisiologia , Comportamento Sedentário , Ultrassonografia
8.
Circ Res ; 113(5): 553-61, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23852539

RESUMO

RATIONALE: A stable 40-kDa fragment is produced from cardiac myosin-binding protein C when the heart is stressed using a stimulus, such as ischemia-reperfusion injury. Elevated levels of the fragment can be detected in the diseased mouse and human heart, but its ability to interfere with normal cardiac function in the intact animal is unexplored. OBJECTIVE: To understand the potential pathogenicity of the 40-kDa fragment in vivo and to investigate the molecular pathways that could be targeted for potential therapeutic intervention. METHODS AND RESULTS: We generated cardiac myocyte-specific transgenic mice using a Tet-Off inducible system to permit controlled expression of the 40-kDa fragment in cardiomyocytes. When expression of the 40-kDa protein is induced by crossing the responder animals with tetracycline transactivator mice under conditions in which substantial quantities approximating those observed in diseased hearts are reached, the double-transgenic mice subsequently experience development of sarcomere dysgenesis and altered cardiac geometry, and the heart fails between 12 and 17 weeks of age. The induced double-transgenic mice had development of cardiac hypertrophy with myofibrillar disarray and fibrosis, in addition to activation of pathogenic MEK-ERK pathways. Inhibition of MEK-ERK signaling was achieved by injection of the mitogen-activated protein kinase (MAPK)/ERK inhibitor U0126. The drug effectively improved cardiac function, normalized heart size, and increased probability of survival. CONCLUSIONS: These results suggest that the 40-kDa cardiac myosin-binding protein C fragment, which is produced at elevated levels during human cardiac disease, is a pathogenic fragment that is sufficient to cause hypertrophic cardiomyopathy and heart failure.


Assuntos
Proteínas de Transporte/metabolismo , Animais , Butadienos/farmacologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Feminino , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/citologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Nitrilas/farmacologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia , Sarcômeros/química
9.
Am J Physiol Heart Circ Physiol ; 306(3): H326-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24285112

RESUMO

The very long-chain acyl-CoA dehydrogenase (VLCAD) enzyme catalyzes the first step of mitochondrial ß-oxidation. Patients with VLCAD deficiency present with hypoketotic hypoglycemia and cardiomyopathy, which can be exacerbated by fasting and/or cold stress. Global VLCAD knockout mice recapitulate these phenotypes: mice develop cardiomyopathy, and cold exposure leads to rapid hypothermia and death. However, the contribution of different tissues to development of these phenotypes has not been studied. We generated cardiac-specific VLCAD-deficient (cVLCAD(-/-)) mice by Cre-mediated ablation of the VLCAD in cardiomyocytes. By 6 mo of age, cVLCAD(-/-) mice demonstrated increased end-diastolic and end-systolic left ventricular dimensions and decreased fractional shortening. Surprisingly, selective VLCAD gene ablation in cardiomyocytes was sufficient to evoke severe cold intolerance in mice who rapidly developed severe hypothermia, bradycardia, and markedly depressed cardiac function in response to fasting and cold exposure (+5°C). We conclude that cardiac-specific VLCAD deficiency is sufficient to induce cold intolerance and cardiomyopathy and is associated with reduced ATP production. These results provide strong evidence that fatty acid oxidation in myocardium is essential for maintaining normal cardiac function under these stress conditions.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Cardiomiopatia Dilatada/enzimologia , Hipotermia/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/metabolismo , Temperatura Baixa , Síndrome Congênita de Insuficiência da Medula Óssea , Modelos Animais de Doenças , Hipotermia/etiologia , Hipotermia/metabolismo , Erros Inatos do Metabolismo Lipídico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Mitocondriais , Doenças Musculares , Oxirredução , Estresse Fisiológico
10.
J Mol Cell Cardiol ; 60: 50-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23531444

RESUMO

Bicuspid or bifoliate aortic valve (BAV) results in two rather than three cusps and occurs in 1-2% of the population placing them at higher risk of developing progressive aortic valve disease. Only NOTCH-1 has been linked to human BAV, and genetically modified mouse models of BAV are limited by low penetrance and additional malformations. Here we report that in the Adamts5(-/-) valves, collagen I, collagen III, and elastin were disrupted in the malformed hinge region that anchors the mature semilunar cusps and where the ADAMTS5 proteoglycan substrate versican, accumulates. ADAMTS5 deficient prevalvular mesenchyme also exhibited a reduction of α-smooth muscle actin and filamin A suggesting versican cleavage may be involved in TGFß signaling. Subsequent evaluation showed a significant decrease of pSmad2 in regions of prevalvular mesenchyme in Adamts5(-/-) valves. To test the hypothesis that ADAMTS5 versican cleavage is required, in part, to elicit Smad2 phosphorylation we further reduced Smad2 in Adamts5(-/-) mice through intergenetic cross. The Adamts5(-/-);Smad2(+/-) mice had highly penetrant BAV and bicuspid pulmonary valve (BPV) malformations as well as increased cusp and hinge size compared to the Adamts5(-/-) and control littermates. These studies demonstrate that semilunar cusp malformations (BAV and BPV) can arise from a failure to remodel the proteoglycan-rich provisional ECM. Specifically, faulty versican clearance due to ADAMTS5 deficiency blocks the initiation of pSmad2 signaling, which is required for excavation of endocardial cushions during aortic and pulmonary valve development. Further studies using the Adamts5(-/-); Smad2(+/-) mice with highly penetrant and isolated BAV, may lead to new pharmacological treatments for valve disease.


Assuntos
Valva Aórtica/anormalidades , Cardiopatias Congênitas/embriologia , Doenças das Valvas Cardíacas/embriologia , Proteólise , Transdução de Sinais , Proteína Smad2/metabolismo , Versicanas/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAMTS5 , Actinas/genética , Actinas/metabolismo , Animais , Valva Aórtica/embriologia , Valva Aórtica/metabolismo , Doença da Válvula Aórtica Bicúspide , Cruzamentos Genéticos , Filaminas/genética , Filaminas/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Camundongos , Camundongos Knockout , Fosforilação/genética , Proteína Smad2/genética , Versicanas/genética
11.
J Mol Cell Cardiol ; 64: 39-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24001940

RESUMO

Cardiac myosin binding protein C (cMyBP-C) phosphorylation is differentially regulated in the normal heart and during disease development. Our objective was to examine in detail three phosphorylatable sites (Ser-273, Ser-282, and Ser-302) present in the protein's cardiac-specific sequences, as these residues are differentially and reversibly phosphorylated during normal and abnormal cardiac function. Three transgenic lines were generated: DAA, which expressed cMyBP-C containing Asp-273, Ala-282, and Ala-302, in which a charged amino acid was placed at residue 273 and the remaining two sites rendered nonphosphorylatable by substituting alanines for the two serines; AAD containing Ala-273, Ala-282, and Asp-302, in which aspartate was placed at residue 302 and the remaining two sites rendered nonphosphorylatable; and SDS containing Ser-273, Asp-282, and Ser-302. These mice were compared to mice constructed previously along similar lines: wild type, in which normal cMyBP-C is transgenically expressed, AllP-, in which alanines were substituted and ADA mice as well. DAA and AAD mice showed pathology that was more severe than cMyBP-C nulls. DAA and AAD animals exhibited left ventricular chamber dilation, interstitial fibrosis, irregular cardiac rhythm and sudden cardiac death. Our results define the effects of the sites' post-translational modifications on cMyBP-C functionality and together, give a comprehensive picture of the potential consequences of site-specific phosphorylation. Ser-282 is a key residue in controlling S2 interaction with the thick and thin filaments. The new DAA and AAD constructs show that phosphorylation at one site in the absence of the ability to phosphorylate the other sites, depending upon the particular residues involved, can lead to severe cardiac remodeling and dysfunction.


Assuntos
Proteínas de Transporte/metabolismo , Sequência de Aminoácidos , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Códon , Ecocardiografia , Eletrocardiografia , Fibrose/genética , Hemodinâmica , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Fosforilação , Alinhamento de Sequência , Serina/química , Serina/metabolismo
12.
Circ Res ; 109(2): 151-60, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21617129

RESUMO

RATIONALE: Increasing evidence suggests that misfolded proteins and intracellular aggregates contribute to cardiac disease and heart failure. Several cardiomyopathies, including the αB-crystallin R120G mutation (CryAB(R120G)) model of desmin-related cardiomyopathy, accumulate cytotoxic misfolded proteins in the form of preamyloid oligomers and aggresomes. Impaired autophagic function is a potential cause of misfolded protein accumulations, cytoplasmic aggregate loads, and cardiac disease. Atg7, a mediator of autophagosomal biogenesis, is a putative regulator of autophagic function. OBJECTIVE: To determine whether autophagic induction by Atg7 is sufficient to reduce misfolded protein and aggregate content in protein misfolding-stressed cardiomyocytes. METHODS AND RESULTS: To define the gain and loss of function effects of Atg7 expression on CryAB(R120G) protein misfolding and aggregates, neonatal rat cardiomyocytes were infected with adenoviruses expressing either wild-type CryAB or CryAB(R120G) and coinfected with Atg7 adenovirus or with Atg7 silencing siRNAs to produce gain-of or loss-of Atg7 function. Atg7 overexpression effectively induced basal autophagy with no detrimental effects on cell survival, suggesting that Atg7 can activate autophagy with no apparent cytotoxic effects. Autophagic flux assays on CryAB(R120G)-expressing cardiomyocytes revealed reduced autophagic function, which probably contributed to the failure of misfolded proteins and aggregates to be cleared. Coexpression of Atg7 and CryAB(R120G) significantly reduced preamyloid oligomer staining, aggregate content, and cardiomyocyte cytotoxicity. Conversely, Atg7 silencing in the CryAB(R120G) background significantly inhibited the already reduced rate of autophagy and increased CryAB(R120G) aggregate content and cytotoxicity. CONCLUSIONS: Atg7 induces basal autophagy, rescues the CryAB(R120G) autophagic deficiency, and attenuates the accumulation of misfolded proteins and aggregates in cardiomyocytes.


Assuntos
Autofagia , Miócitos Cardíacos/citologia , Enzimas Ativadoras de Ubiquitina/fisiologia , Cadeia B de alfa-Cristalina/genética , Adenoviridae/genética , Animais , Proteína 7 Relacionada à Autofagia , Terapia Genética , Proteínas Mutantes/administração & dosagem , Mutação de Sentido Incorreto , Dobramento de Proteína , Deficiências na Proteostase/prevenção & controle , Ratos , Transfecção , Cadeia B de alfa-Cristalina/administração & dosagem
13.
Circ Res ; 109(2): 141-50, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21597010

RESUMO

RATIONALE: Cardiac myosin-binding protein-C (cMyBP-C) phosphorylation at Ser-273, Ser-282, and Ser-302 regulates myocardial contractility. In vitro and in vivo experiments suggest the nonequivalence of these sites and the potential importance of Ser-282 phosphorylation in modulating the protein's overall phosphorylation and myocardial function. OBJECTIVE: To determine whether complete cMyBP-C phosphorylation is dependent on Ser-282 phosphorylation and to define its role in myocardial function. We hypothesized that Ser-282 regulates Ser-302 phosphorylation and cardiac function during ß-adrenergic stimulation. METHODS AND RESULTS: Using recombinant human C1-M-C2 peptides in vitro, we determined that protein kinase A can phosphorylate Ser-273, Ser-282, and Ser-302. Protein kinase C can also phosphorylate Ser-273 and Ser-302. In contrast, Ca(2+)-calmodulin-activated kinase II targets Ser-302 but can also target Ser-282 at nonphysiological calcium concentrations. Strikingly, Ser-302 phosphorylation by Ca(2+)-calmodulin-activated kinase II was abolished by ablating the ability of Ser-282 to be phosphorylated via alanine substitution. To determine the functional roles of the sites in vivo, three transgenic lines, which expressed cMyBP-C containing either Ser-273-Ala-282-Ser-302 (cMyBP-C(SAS)), Ala-273-Asp-282-Ala-302 (cMyBP-C(ADA)), or Asp-273-Ala-282-Asp-302 (cMyBP-C(DAD)), were generated. Mutant protein was completely substituted for endogenous cMyBP-C by breeding each mouse line into a cMyBP-C null (t/t) background. Serine-to-alanine substitutions were used to ablate the abilities of the residues to be phosphorylated, whereas serine-to-aspartate substitutions were used to mimic the charged state conferred by phosphorylation. Compared to control nontransgenic mice, as well as transgenic mice expressing wild-type cMyBP-C, the transgenic cMyBP-C(SAS(t/t)), cMyBP-C(ADA(t/t)), and cMyBP-C(DAD(t/t)) mice showed no increases in morbidity and mortality and partially rescued the cMyBP-C((t/t)) phenotype. The loss of cMyBP-C phosphorylation at Ser-282 led to an altered ß-adrenergic response. In vivo hemodynamic studies revealed that contractility was unaffected but that cMyBP-C(SAS(t/t)) hearts showed decreased diastolic function at baseline. However, the normal increases in cardiac function (increased contractility/relaxation) as a result of infusion of ß-agonist was significantly decreased in all of the mutants, suggesting that competency for phosphorylation at multiple sites in cMyBP-C is a prerequisite for normal ß-adrenergic responsiveness. CONCLUSIONS: Ser-282 has a unique regulatory role in that its phosphorylation is critical for the subsequent phosphorylation of Ser-302. However, each residue plays a role in regulating the contractile response to ß-agonist stimulation.


Assuntos
Proteínas de Transporte/metabolismo , Coração/fisiologia , Serina/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Substituição de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Fosforilação
14.
J Mol Cell Cardiol ; 53(6): 838-47, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22982234

RESUMO

Despite early demonstrations of myosin binding protein C's (MyBP-C) interaction with actin, different investigators have reached different conclusions regarding the relevant and necessary domains mediating this binding. Establishing the detailed structure-function relationships is needed to fully understand cMyBP-C's ability to impact on myofilament contraction as mutations in different domains are causative for familial hypertrophic cardiomyopathy. We defined cMyBP-C's N-terminal structural domains that are necessary or sufficient to mediate interactions with actin and/or the head region of the myosin heavy chain (S2-MyHC). Using a combination of genetics and functional assays, we defined the actin binding site(s) present in cMyBP-C. We confirmed that cMyBP-C's C1 and m domains productively interact with actin, while S2-MyHC interactions are restricted to the m domain. Using residue-specific mutagenesis, we identified the critical actin binding residues and distinguished them from the residues that were critical for S2-MyHC binding. To validate the structural and functional significance of these residues, we silenced the endogenous cMyBP-C in neonatal rat cardiomyocytes (NRC) using cMyBP-C siRNA, and replaced the endogenous cMyBP-C with normal or actin binding-ablated cMyBP-C. Replacement with actin binding-ablated cMyBP-C showed that the mutated protein did not incorporate into the sarcomere normally. Residues responsible for actin and S2-MyHC binding are partially present in overlapping domains but are unique. Expression of an actin binding-deficient cMyBP-C resulted in abnormal cytosolic distribution of the protein, indicating that interaction with actin is essential for the formation and/or maintenance of normal cMyBP-C sarcomeric distribution.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Miócitos Cardíacos/metabolismo , Actinas/química , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Inativação Gênica , Camundongos , Dados de Sequência Molecular , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Ratos , Alinhamento de Sequência
15.
J Mol Cell Cardiol ; 52(3): 773-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155237

RESUMO

Depressed Ca-handling in cardiomyocytes is frequently attributed to impaired sarcoplasmic reticulum (SR) function in human and experimental heart failure. Phospholamban (PLN) is a key regulator of SR and cardiac function, and PLN mutations in humans have been associated with dilated cardiomyopathy (DCM). We previously reported the deletion of the highly conserved amino acid residue arginine 14 (nucleic acids 39, 40 and 41) in DCM patients. This basic amino acid is important in maintaining the upstream consensus sequence for PKA phosphorylation of Ser 16 in PLN. To assess the function of this mutant PLN, we introduced the PLN-R14Del in cardiac myocytes of the PLN null mouse. Transgenic lines expressing mutant PLN-R14Del at similar protein levels to wild types exhibited no inhibition of the initial rates of oxalate-facilitated SR Ca uptake compared to PLN-knockouts (PLN-KO). The contractile parameters and Ca-kinetics also remained highly stimulated in PLN-R14Del cardiomyocytes, similar to PLN-KO, and isoproterenol did not further stimulate these hyper-contractile basal parameters. Consistent with the lack of inhibition on SR Ca-transport and contractility, confocal microscopy indicated that the PLN-R14Del failed to co-localize with SERCA2a. Moreover, PLN-R14Del did not co-immunoprecipitate with SERCA2a (as did WT-PLN), but rather co-immunoprecipitated with the sarcolemmal Na/K-ATPase (NKA) and stimulated NKA activity. In addition, studies in HEK cells indicated significant fluorescence resonance energy transfer between PLN-R14Del-YFP and NKAα1-CFP, but not with the NKA regulator phospholemman. Despite the enhanced cardiac function in PLN-R14Del hearts (as in PLN-knockouts), there was cardiac hypertrophy (unlike PLN-KO) coupled with activation of Akt and the MAPK pathways. Thus, human PLN-R14Del is misrouted to the sarcolemma, in the absence of endogenous PLN, and alters NKA activity, leading to cardiac remodeling.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Deleção de Sequência , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Cálcio/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Ativação Enzimática/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ligação Proteica , Transporte Proteico , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Remodelação Ventricular/genética
16.
Circ Res ; 106(9): 1524-32, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20360253

RESUMO

RATIONALE: Transgenic mice with cardiac specific overexpression of mutated alphaB-crystallin (CryAB(R120G)) display Desmin-related myopathy (DRM) with dilated cardiomyopathy and heart failure. Our previous studies showed the presence of progressive mitochondrial abnormalities and activation of apoptotic cell death in CryAB(R120G) transgenic hearts. However, the role of mitochondrial dysfunction and apoptosis in the overall course of the disease was unclear. OBJECTIVE: We tested the hypothesis that prevention of apoptosis would ameliorate CryAB(R120G) pathology and decrease morbidity. METHODS AND RESULTS: We crossed CryAB(R120G) mice to transgenic mice with cardiac specific overexpression of Bcl-2. Sustained Bcl-2 overexpression in CryAB(R120G) hearts prolonged CryAB(R120G) transgenic mice survival by 20%. This was associated with decreased mitochondrial abnormalities, restoration of cardiac function, prevention of cardiac hypertrophy, and attenuation of apoptosis. CryAB(R120G) misfolded protein aggregation was significantly reduced in the double transgenic. However, inhibition of apoptotic signaling resulted in the upregulation of autophagy and alternative death pathways, the net result being increased necrosis. CONCLUSION: Although Bcl-2 overexpression prolonged life in this DRM model, in the absence of apoptosis, another death pathway was activated.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Desmina/metabolismo , Células 3T3 , Animais , Apoptose , Cardiomiopatia Hipertrófica/patologia , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais , Taxa de Sobrevida , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
17.
Circ Res ; 107(4): 549-57, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20576933

RESUMO

RATIONALE: Elastin is a ubiquitous extracellular matrix protein that is highly organized in heart valves and arteries. Because elastic fiber abnormalities are a central feature of degenerative valve disease, we hypothesized that elastin-insufficient mice would manifest viable heart valve disease. OBJECTIVE: To analyze valve structure and function in elastin-insufficient mice (Eln(+/-)) at neonatal, juvenile, adult, and aged adult stages. METHODS AND RESULTS: At birth, histochemical analysis demonstrated normal extracellular matrix organization in contrast to the aorta. However, at juvenile and adult stages, thin elongated valves with extracellular matrix disorganization, including elastin fragment infiltration of the annulus, were observed. The valve phenotype worsened by the aged adult stage with overgrowth and proteoglycan replacement of the valve annulus. The progressive nature of elastin insufficiency was also shown by aortic mechanical testing that demonstrated incrementally abnormal tensile stiffness from juvenile to adult stages. Eln(+/-) mice demonstrated increased valve interstitial cell proliferation at the neonatal stage and varied valve interstitial cell activation at early and late stages. Gene expression profile analysis identified decreased transforming growth factor-beta-mediated fibrogenesis signaling in Eln(+/-) valve tissue. Juvenile Eln(+/-) mice demonstrated normal valve function, but progressive valve disease (predominantly aortic regurgitation) was identified in 17% of adult and 70% of aged adult Eln(+/-) mice by echocardiography. CONCLUSIONS: These results identify the Eln(+/-) mouse as a model of latent aortic valve disease and establish a role for elastin dysregulation in valve pathogenesis.


Assuntos
Valva Aórtica/anormalidades , Modelos Animais de Doenças , Elastina/deficiência , Elastina/genética , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Progressão da Doença , Haploidia , Doenças das Valvas Cardíacas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes
18.
J Biol Chem ; 285(9): 6716-24, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20037164

RESUMO

Calcineurin is a protein phosphatase that is uniquely regulated by sustained increases in intracellular Ca(2+) following signal transduction events. Calcineurin controls cellular proliferation, differentiation, apoptosis, and inducible gene expression following stress and neuroendocrine stimulation. In the adult heart, calcineurin regulates hypertrophic growth of cardiomyocytes in response to pathologic insults that are associated with altered Ca(2+) handling. Here we determined that calcineurin signaling is directly linked to the proper control of cardiac contractility, rhythm, and the expression of Ca(2+)-handling genes in the heart. Our approach involved a cardiomyocyte-specific deletion using a CnB1-LoxP-targeted allele in mice and three different cardiac-expressing Cre alleles/transgenes. Deletion of calcineurin with the Nkx2.5-Cre knock-in allele resulted in lethality at 1 day after birth due to altered right ventricular morphogenesis, reduced ventricular trabeculation, septal defects, and valvular overgrowth. Slightly later deletion of calcineurin with the alpha-myosin heavy chain Cre transgene resulted in lethality in early mid adulthood that was characterized by substantial reductions in cardiac contractility, severe arrhythmia, and reduced myocyte content in the heart. Young calcineurin heart-deleted mice died suddenly after pressure overload stimulation or neuroendocrine agonist infusion, and telemetric monitoring of older mice showed arrhythmia leading to sudden death. Mechanistically, loss of calcineurin reduced expression of key Ca(2+)-handling genes that likely lead to arrhythmia and reduced contractility. Loss of calcineurin also directly impacted cellular proliferation in the postnatal developing heart. These results reveal multiple mechanisms whereby calcineurin regulates cardiac development and myocyte contractility.


Assuntos
Calcineurina/fisiologia , Coração/crescimento & desenvolvimento , Animais , Arritmias Cardíacas , Calcineurina/deficiência , Calcineurina/genética , Cálcio , Proliferação de Células , Deleção de Genes , Coração/fisiologia , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Subunidades Proteicas
19.
Circ Res ; 104(8): 1021-8, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19299643

RESUMO

An R120G mutation in alphaB-crystallin (CryAB(R120G)) causes desmin-related myopathy (DRM). In mice with cardiomyocyte-specific expression of the mutation, CryAB(R120G)-mediated DRM is characterized by CryAB and desmin accumulations within cardiac muscle, mitochondrial deficiencies, activation of apoptosis, and heart failure (HF). Excessive production of reactive oxygen species (ROS) is often a hallmark of HF and treatment with antioxidants can sometimes prevent the progression of HF in terms of contractile dysfunction and cardiomyocyte survival. It is unknown whether blockade of ROS is beneficial for protein misfolding diseases such as DRM. We addressed this question by blocking the activity of xanthine oxidase (XO), a superoxide-generating enzyme that is upregulated in our model of DRM. The XO inhibitor oxypurinol was administered to CryAB(R120G) mice for a period of 1 or 3 months. Mitochondrial function was dramatically improved in treated animals in terms of complex I activity and conservation of mitochondrial membrane potential. Oxypurinol also largely restored normal mitochondrial morphology. Surprisingly, however, cardiac contractile function and cardiac compliance were unimproved, indicating that the contractile deficit might be independent of mitochondrial dysfunction and the initiation of apoptosis. Using magnetic bead microrheology at the single cardiomyocyte level, we demonstrated that sarcomeric disarray and accumulation of the physical aggregates resulted in significant changes in the cytoskeletal mechanical properties in the CryAB(R120G) cardiomyocytes. Our findings indicate that oxypurinol treatment largely prevented mitochondrial deficiency in DRM but that contractility was not improved because of mechanical deficits in passive cytoskeletal stiffness.


Assuntos
Cardiomiopatias/metabolismo , Desmina/metabolismo , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Função Ventricular Esquerda , Animais , Apoptose , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Complacência (Medida de Distensibilidade) , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Hemorreologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Mutação , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Oxipurinol/farmacologia , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Sarcômeros/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
20.
Nature ; 434(7033): 658-62, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15800627

RESUMO

Mitochondria play a critical role in mediating both apoptotic and necrotic cell death. The mitochondrial permeability transition (mPT) leads to mitochondrial swelling, outer membrane rupture and the release of apoptotic mediators. The mPT pore is thought to consist of the adenine nucleotide translocator, a voltage-dependent anion channel, and cyclophilin D (the Ppif gene product), a prolyl isomerase located within the mitochondrial matrix. Here we generated mice lacking Ppif and mice overexpressing cyclophilin D in the heart. Ppif null mice are protected from ischaemia/reperfusion-induced cell death in vivo, whereas cyclophilin D-overexpressing mice show mitochondrial swelling and spontaneous cell death. Mitochondria isolated from the livers, hearts and brains of Ppif null mice are resistant to mitochondrial swelling and permeability transition in vitro. Moreover, primary hepatocytes and fibroblasts isolated from Ppif null mice are largely protected from Ca2+-overload and oxidative stress-induced cell death. However, Bcl-2 family member-induced cell death does not depend on cyclophilin D, and Ppif null fibroblasts are not protected from staurosporine or tumour-necrosis factor-alpha-induced death. Thus, cyclophilin D and the mitochondrial permeability transition are required for mediating Ca2+- and oxidative damage-induced cell death, but not Bcl-2 family member-regulated death.


Assuntos
Ciclofilinas/deficiência , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Adenoviridae/genética , Animais , Atractilosídeo/farmacologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Encéfalo/citologia , Cálcio/metabolismo , Cálcio/farmacologia , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Ciclofilinas/metabolismo , Citocromos c/metabolismo , Fibroblastos , Deleção de Genes , Peróxido de Hidrogênio/farmacologia , Fígado/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Dilatação Mitocondrial/efeitos dos fármacos , Dilatação Mitocondrial/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA