RESUMO
Clostridium difficile is associated with antibiotic-associated diarrhea and pseudomembranous colitis in humans. Its 2 major toxins, toxins A and B, enter host cells and inactivate GTPases of the Ras homologue/rat sarcoma family by glucosylation. Pore formation of the toxins in the endosomal membrane enables the translocation of their glucosyltransferase domain into the cytosol, and membrane cholesterol is crucial for this process. Here, we asked whether the activity of the sterol regulatory element-binding protein 2 (SREBP-2) pathway, which regulates the cholesterol content in membranes, affects the susceptibility of target cells toward toxins A and B. We show that the SREBP-2 pathway is crucial for the intoxication process of toxins A and B by using pharmacological inhibitors (PF-429242, 25-hydroxycholesterol) and cells that are specifically deficient in SREBP-2 pathway signaling. SREBP-2 pathway inhibition disturbed the cholesterol-dependent pore formation of toxin B in cellular membranes. Preincubation with the cholesterol-lowering drug simvastatin protected cells from toxin B intoxication. Inhibition of the SREBP-2 pathway was without effect when the enzyme portion of toxin B was introduced into target cells via the cell delivery property of anthrax protective antigen. Taken together, these findings allowed us to identify the SREBP-2 pathway as a suitable target for the development of antitoxin therapeutics against C. difficile toxins A and B.-Papatheodorou, P., Song, S., López-Ureña, D., Witte, A., Marques, F., Ost, G. S., Schorch, B., Chaves-Olarte, E., Aktories, K. Cytotoxicity of Clostridium difficile toxins A and B requires an active and functional SREBP-2 pathway.
Assuntos
Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Enterotoxinas/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , Células HeLa , Humanos , Hidroxicolesteróis/farmacologia , Camundongos , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Photorhabdus luminescens Tc toxins consist of the cell-binding component TcA, the linker component TcB, and the enzyme component TcC. TccC3, a specific isoform of TcC, ADP-ribosylates actin and causes redistribution of the actin cytoskeleton. TccC5, another isoform of TcC, ADP-ribosylates and activates Rho proteins. Here, we report that the proteasome inhibitor MG132 blocks the intoxication of cells by Tc toxin. The inhibitory effect of MG132 was not observed, when the ADP-ribosyltransferase domain of the TcC component was introduced into target cells by protective antigen, which is the binding and delivery component of anthrax toxin. Additionally, MG132 affected neither pore formation by TcA in artificial membranes nor binding of the toxin to cells. Furthermore, the in vitro ADP-ribosylation of actin by the enzyme domain of TccC3 was not affected by MG132. Similar to MG132, several calpain inhibitors blocked the action of the Tc toxin. Proteolytic cleavage of the binding component TcA induced by P. luminescens protease PrtA1 or by collagenase largely increased the toxicity of the Tc toxin. MG132 exhibited no inhibitory effect on the cleaved TcA component. Moreover, binding of TcA to target cells was largely increased after cleavage. The data indicate that Tc toxin is activated by proteolytic processing of the TcA component, resulting in increased receptor binding. Toxin processing is probably inhibited by MG132.