Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Nat Prod ; 87(4): 664-674, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38362867

RESUMO

We report the molecular mechanism of action of gausemycins and the isolation of new members of the family, gausemycins C (1c), D (1d), E (1e), and F (1f), the minor components of the mixture. To elucidate the mechanism of action of gausemycins, we investigated the antimicrobial activity of the most active compounds, gausemycins A and B, in the presence of Ca2+, other metal ions, and phosphate. Gausemycins require a significantly higher Ca2+ concentration for maximum activity than daptomycin but lower than that required for malacidine and cadasides. Species-specific antimicrobial activity was found upon testing against a wide panel of Gram-positive bacteria. Membranoactivity of gausemycins was demonstrated upon their interactions with model lipid bilayers and micelles. The pore-forming ability was found to be dramatically dependent on the Ca2+ concentration and the membrane lipid composition. An NMR study of gausemycin B in zwitterionic and anionic micelles suggested the putative structure of the gausemycin/membrane complex and revealed the binding of Ca2+ by the macrocyclic domain of the antibiotic.


Assuntos
Antibacterianos , Cálcio , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Cálcio/metabolismo , Estrutura Molecular , Bactérias Gram-Positivas/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Daptomicina/farmacologia , Daptomicina/química , Bicamadas Lipídicas/química , Micelas
2.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892216

RESUMO

The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23FS*, V31KS*, and R44KS*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of S. aureus, along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including S. aureus (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and B. cereus (strain IP 5832), and Gram-negative bacteria such as P. aeruginosa (ATCC 28753 and 2943 strains) and E. coli (MG1655 and K12 strains). Peptides R23FS*, V31KS*, and R44KS* exhibited antimicrobial activity comparable to gentamicin and meropenem against all tested bacteria at concentrations ranging from 24 to 48 µM. The peptides showed a stronger antimicrobial effect against B. cereus. Notably, peptide R44KS* displayed high efficacy compared to peptides R23FS* and V31KS*, particularly evident at lower concentrations, resulting in significant inhibition of bacterial growth. Furthermore, modified peptides V31KS* and R44KS* demonstrated enhanced inhibitory effects on bacterial growth across different strains compared to their unmodified counterparts V31KS and R44KS. These results highlight the potential of integrating cell-penetrating peptides, amyloidogenic fragments, and amino acid residue modifications to advance the innovation in the field of antimicrobial peptides, thereby increasing their effectiveness against a broad spectrum of pathogens.


Assuntos
Peptídeos Antimicrobianos , Peptídeos Penetradores de Células , Testes de Sensibilidade Microbiana , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Aminoácidos/química , Desenho de Fármacos , Proteínas Amiloidogênicas/química
3.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069046

RESUMO

Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp). Assessment of the peptides TAT-AMP, AMP-Antp, and TAT-AMP-Antp revealed their potential against Gram-positive strains (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus cereus). Peptides TAT-AMP and AMP-Antp using an amyloidogenic AMP from S1 ribosomal protein Thermus thermophilus, at concentrations ranging from 3 to 12 µM, exhibited enhanced antimicrobial activity against B. cereus. TAT-AMP and TAT-AMP-Antp, using an amyloidogenic AMP from the S1 ribosomal protein Pseudomonas aeruginosa, at a concentration of 12 µM, demonstrated potent antimicrobial activity against S. aureus and MRSA. Notably, the TAT-AMP, at a concentration of 12 µM, effectively inhibited Escherichia coli (E. coli) growth and displayed antimicrobial effects similar to gentamicin after 15 h of incubation. Peptide characteristics determined antimicrobial activity against diverse strains. The study highlights the intricate relationship between peptide properties and antimicrobial potential. Mechanisms of AMP action are closely tied to bacterial cell wall attributes. Peptides with the TAT fragment exhibited enhanced antimicrobial activity against S. aureus, MRSA, and P. aeruginosa. Peptides containing only the Antp fragment displayed lower activity. None of the investigated peptides demonstrated cytotoxic or cytostatic effects on either BT-474 cells or human skin fibroblasts. In conclusion, CPP-AMPs offer promise against various bacterial strains, offering insights for targeted antimicrobial development.


Assuntos
Anti-Infecciosos , Peptídeos Penetradores de Células , Staphylococcus aureus Resistente à Meticilina , Humanos , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Staphylococcus aureus , Escherichia coli , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas Ribossômicas/farmacologia , Testes de Sensibilidade Microbiana
4.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232854

RESUMO

Herein, we report that chromone-containing allylmorpholines can affect ion channels formed by pore-forming antibiotics in model lipid membranes, which correlates with their ability to influence membrane boundary potential and lipid-packing stress. At 100 µg/mL, allylmorpholines 1, 6, 7, and 8 decrease the boundary potential of the bilayers composed of palmitoyloleoylphosphocholine (POPC) by about 100 mV. At the same time, the compounds do not affect the zeta-potential of POPC liposomes, but reduce the membrane dipole potential by 80-120 mV. The allylmorpholine-induced drop in the dipole potential produce 10-30% enhancement in the conductance of gramicidin A channels. Chromone-containing allylmorpholines also affect the thermotropic behavior of dipalmytoylphosphocholine (DPPC), abolishing the pretransition, lowering melting cooperativity, and turning the main phase transition peak into a multicomponent profile. Compounds 4, 6, 7, and 8 are able to decrease DPPC's melting temperature by about 0.5-1.9 °C. Moreover, derivative 7 is shown to increase the temperature of transition of palmitoyloleoylphosphoethanolamine from lamellar to inverted hexagonal phase. The effects on lipid-phase transitions are attributed to the changes in the spontaneous curvature stress. Alterations in lipid packing induced by allylmorpholines are believed to potentiate the pore-forming ability of amphotericin B and gramicidin A by several times.


Assuntos
Gramicidina , Bicamadas Lipídicas , Anfotericina B , Antibacterianos , Cromonas/farmacologia , Gramicidina/metabolismo , Gramicidina/farmacologia , Canais Iônicos , Lipossomos
5.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804648

RESUMO

This study was focused on the molecular mechanisms of action of saponins and related compounds (sapogenins and alkaloids) on model lipid membranes. Steroids and triterpenes were tested. A systematic analysis of the effects of these chemicals on the physicochemical properties of the lipid bilayers and on the formation and functionality of the reconstituted ion channels induced by antimicrobial agents was performed. It was found that digitonin, tribulosin, and dioscin substantially reduced the boundary potential of the phosphatidylcholine membranes. We concluded that saponins might affect the membrane boundary potential by restructuring the membrane hydration layer. Moreover, an increase in the conductance and lifetime of gramicidin A channels in the presence of tribulosin was due to an alteration in the membrane dipole potential. Differential scanning microcalorimetry data indicated the key role of the sapogenin core structure (steroid or triterpenic) in affecting lipid melting and disordering. We showed that an alteration in pore forming activity of syringomycin E by dioscin might be due to amendments in the lipid packing. We also found that the ability of saponins to disengage the fluorescent marker calcein from lipid vesicles might be also determined by their ability to induce a positive curvature stress.


Assuntos
Membrana Celular/efeitos dos fármacos , Lipídeos de Membrana/química , Saponinas/farmacologia , Membrana Celular/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/química , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Lipídeos de Membrana/antagonistas & inibidores , Potenciais da Membrana/efeitos dos fármacos , Estrutura Molecular , Transição de Fase/efeitos dos fármacos , Saponinas/química
6.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681725

RESUMO

Copper-containing agents are promising antitumor pharmaceuticals due to the ability of the metal ion to react with biomolecules. In the current study, we demonstrate that inorganic Cu2+ in the form of oxide nanoparticles (NPs) or salts, as well as Cu ions in the context of organic complexes (oxidation states +1, +1.5 and +2), acquire significant cytotoxic potency (2-3 orders of magnitude determined by IC50 values) in combinations with N-acetylcysteine (NAC), cysteine, or ascorbate. In contrast, other divalent cations (Zn, Fe, Mo, and Co) evoked no cytotoxicity with these combinations. CuO NPs (0.1-1 µg/mL) together with 1 mM NAC triggered the formation of reactive oxygen species (ROS) within 2-6 h concomitantly with perturbation of the plasma membrane and caspase-independent cell death. Furthermore, NAC potently sensitized HCT116 colon carcinoma cells to Cu-organic complexes in which the metal ion coordinated with 5-(2-pyridylmethylene)-2-methylthio-imidazol-4-one or was present in the coordination sphere of the porphyrin macrocycle. The sensitization effect was detectable in a panel of mammalian tumor cell lines including the sublines with the determinants of chemotherapeutic drug resistance. The components of the combination were non-toxic if added separately. Electrochemical studies revealed that Cu cations underwent a stepwise reduction in the presence of NAC or ascorbate. This mechanism explains differential efficacy of individual Cu-organic compounds in cell sensitization depending on the availability of Cu ions for reduction. In the presence of oxygen, Cu+1 complexes can generate a superoxide anion in a Fenton-like reaction Cu+1L + O2 → O2-. + Cu+2L, where L is the organic ligand. Studies on artificial lipid membranes showed that NAC interacted with negatively charged phospholipids, an effect that can facilitate the penetration of CuO NPs across the membranes. Thus, electrochemical modification of Cu ions and subsequent ROS generation, as well as direct interaction with membranes, represent the mechanisms of irreversible membrane damage and cell death in response to metal reduction in inorganic and organic Cu-containing compounds.


Assuntos
Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Cobre/química , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipossomos/química , Lipossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Oxirredução , Superóxidos/metabolismo
7.
Angew Chem Int Ed Engl ; 60(34): 18694-18703, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34009717

RESUMO

We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of d-amino acids, lack of the Ca2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), and N-acylation of the ornithine side chain. Gausemycins have pronounced activity against Gram-positive bacteria. Mechanistic studies highlight significant differences compared to known glyco- and lipopeptides. Gausemycins exhibit only slight Ca2+ -dependence of activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.


Assuntos
Lipoglicopeptídeos/isolamento & purificação , Streptomyces/química , Lipoglicopeptídeos/química , Conformação Molecular
8.
Biochim Biophys Acta Biomembr ; 1860(3): 691-699, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29253504

RESUMO

The effects of dipole modifiers, thyroid hormones (thyroxine and triiodothyronine) and xanthene dyes (Rose Bengal, phloxineB, erythrosin, eosinY and fluorescein) on the pore-forming activity of the lipopeptide syringomycin E (SRE) produced by Pseudomonas syringae were studied in a model bilayer. Thyroxine does not noticeably influence the steady-state number of open SRE channels (Nop), whereas triiodothyronine decreases it 10-fold at -50mV. Rose Bengal, phloxine B and erythrosin significantly increase Nop by 350, 100 and 70 times, respectively. Eosin Y and fluorescein do not practically affect the pore-forming activity of SRE. Recently, we showed that hormones decrease the dipole potential of lipid bilayers by approximately 60mV at 50µM, while Rose Bengal, phloxine B and erythrosin at 2.5µM reduce the membrane dipole potential by 120, 80 and 50mV, respectively. In the present study using differential scanning microcalorimetry, confocal fluorescence microscopy, the calcein release technique and measurements of membrane curvature elasticity, we show that triiodothyronine strongly affects the fluidity of model membranes: its addition leads to a significant decrease in the temperature and cooperativity of the main phase transition of DPPC, calcein leakage from DOPC vesicles, fluidization of solid domains in DOPC/DPPC liposomes, and promotion of lipid curvature stress. Thyroxine exerts a weaker effect. Xanthene dyes do not influence the phase transition of DPPC. Despite the decrease in the dipole potential, thyroid hormones modulate SRE channels predominantly via the elastic properties of the membrane, whereas the xanthene dyes Rose Bengal, phloxine B and erythrosine affect SRE channels via bilayer electrostatics.


Assuntos
Depsipeptídeos/efeitos dos fármacos , Corantes Fluorescentes/farmacologia , Lipopeptídeos/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Peptídeos Cíclicos/efeitos dos fármacos , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia , Xantenos/farmacologia , Varredura Diferencial de Calorimetria , Depsipeptídeos/farmacologia , Elasticidade , Condutividade Elétrica , Fluoresceínas/metabolismo , Bicamadas Lipídicas , Lipopeptídeos/farmacologia , Lipossomos , Lipídeos de Membrana/química , Microscopia Confocal , Microscopia de Fluorescência , Nanotubos , Peptídeos Cíclicos/farmacologia , Fosfolipídeos/química
9.
J Membr Biol ; 251(4): 551-562, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29549386

RESUMO

The potential therapeutic applications of plant polyphenols in various neurological, cardiovascular, metabolic and malignant disorders determine the relevance of studying the molecular mechanisms of their action on the cell membranes. Here, the quantitative changes in the physical parameters of model bilayer lipid membranes upon the adsorption of plant polyphenols were evaluated. It was shown that butein and naringenin significantly decreased the intrinsic dipole potential of cholesterol-free and cholesterol-enriched membranes. Cardamonin, 4'-hydroxychalcone, licochalcone A and liquiritigenin demonstrated the average efficiency, while resveratrol did not characterized by the ability to modulate the bilayer electrostatics. At the same time, the tested polyphenols affected melting of phospholipids with saturated acyl chains. The effects were attributed to the lipid disordering and a promotion of the positive curvature stress. According to DSC data and results of measurements of the threshold voltages that cause bilayer breakdown licochalcone A is the most effective agent. Furthermore, the role of the polyphenol induced changes in the electric and elastic properties of lipid host in the regulation of reconstituted ion channels was examined. The ability of the tested polyphenols to decrease the conductance of single ion channels produced by the antifungal cyclic lipopeptide syringomycin E was in agreement with their effects on the dipole potential of the lipid bilayers. The greatest effect of licochalcone A on the steady-state membrane conductance induced by the antifungal polyene macrolide antibiotic nystatin correlated with its greatest efficacy to induce the positive curvature stress. We also found that butein and naringenin bind specifically to a single pore formed by α-hemolysin from Staphylococcus aureus.


Assuntos
Anti-Infecciosos/química , Canais Iônicos/química , Lipídeos de Membrana/química , Polifenóis/química , Chalconas/química , Flavanonas/química , Bicamadas Lipídicas/química
10.
Biochim Biophys Acta ; 1858(2): 289-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657529

RESUMO

The influence of flavonoids and polyene antibiotics on the permeability of membranes has been investigated through measurements of calcein leakage from large unilamellar vesicles composed of DOPC:cholesterol (67:33 mol%). Phloretin and biochanin A have been shown to induce calcein release from liposomes, but quercetin, daidzein, and catechin have not. Differential scanning calorimetry has indicated a decreasing of melting temperature of DPPC vesicles by 1.5-2°C in the presence of phloretin and biochanin A. Quercetin, catechin, and daidzein have had almost no effect on the main transition temperature. Phloretin, biochanin A, and quercetin have significantly broadened the main transition peak of DPPC. Phloretin have increased a leakage induced by polyene antibiotics, whereas catechin and daidzein have not. Quercetin has slightly affected it. The effects of tested flavonoids on the polyene-induced calcein leakage and channel forming activity have been similar. The obtained data agree with the previously supposed hypothesis regarding the enhancement of polyene activity by reducing elastic stress near the lipid mouth of the nystatin pore. The inhibition of polyene channel forming activity by biochanin A observed in planar DOPC:cholesterol bilayers may be related to the flavonoid competition with cholesterol in the polyene-sterol channel complexes.


Assuntos
Colesterol/química , Membranas Artificiais , Floretina/química , Fosfatidilcolinas/química , Polienos/química , Catequina/química , Genisteína/química , Quercetina/química
11.
Biochim Biophys Acta ; 1848(1 Pt A): 192-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25223717

RESUMO

The polyene antifungal antibiotic nystatin confers its biological activity by forming pores in the membranes of target cells. Exposure of only one side of the membrane to nystatin is more relevant than two-side exposure because in vivo antibiotic molecules initially interact with cell membrane from the exterior side. The effect of flavonoids and styryl dyes on the steady-state conductance induced by a cis-side addition of nystatin was investigated by using electrophysiological measurements on artificial membranes. The assessment of changes in membrane dipole potential by dipole modifiers was carried out by their influence on K(+)-nonactin (K(+)-valinomycin) current. The alterations of the phase segregation scenario induced by nystatin and flavonoids were observed via confocal fluorescence microscopy. The introduction of phloretin, phlorizin, biochanin A, myricetin, quercetin, taxifolin, genistin, genistein, and RH 421 leads to a significant increase in the nystatin-induced steady-state transmembrane current through membranes composed of a mixture of DOPC, cholesterol and sphingomyelin (57:33:10 mol%). Conversely, daidzein, catechin, trihydroxyacetophenone, and RH 237 do not affect the transmembrane current. Three possible mechanisms that explain the observed results are discussed: changes in the membrane dipole potential, alterations of the phase separation within the lipid bilayer, and influences of the dipole modifiers on the formation of the lipid mouth of the polyene pore. Most likely, changes in the monolayer curvature in the vicinity of trans-mouth of a nystatin single-length channel prevail over alterations of dipole potential of membrane and the phase segregation scenarios induced by dipole modifiers.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Nistatina/farmacologia , Antifúngicos/farmacologia , Membrana Celular/fisiologia , Colesterol/química , Flavonoides/química , Flavonoides/farmacologia , Genisteína/química , Genisteína/farmacologia , Isoflavonas/química , Isoflavonas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Microscopia Confocal , Microscopia de Fluorescência , Estrutura Molecular , Nistatina/química , Florizina/química , Florizina/farmacologia , Fosfatidilcolinas/química , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Quercetina/química , Quercetina/farmacologia , Esfingomielinas/química , Estirenos/química , Estirenos/farmacologia
12.
Cancer Immunol Immunother ; 65(1): 83-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26646850

RESUMO

Recombinant HSP70 chaperone exerts a profound anticancer effect when administered intratumorally. This action is based on the ability of HSP70 to penetrate tumor cells and extract its endogenous homolog. To enhance the efficacy of HSP70 cycling, we employed phloretin, a flavonoid that enhances the pore-forming activity of the chaperone on artificial membranes. Phloretin increased the efficacy of HSP70 penetration in B16 mouse melanoma cells and K-562 human erythroblasts; this was accompanied with increased transport of the endogenous HSP70 to the plasma membrane. Importantly, treatment with HSP70 combined with phloretin led to the elevation of cell sensitivity to cytotoxic lymphocytes by 16-18 % compared to treatment with the chaperone alone. The incubation of K-562 cells with biotinylated HSP70 and phloretin increased the amount of the chaperone released from cells, suggesting that chaperone cycling could trigger a specific anti-tumor response. We studied the effect of the combination of HSP70 and phloretin using B16 melanoma and a novel method of HSP70-gel application. We found that the addition of phloretin to the gel reduced tumor weight almost fivefold compared with untreated mice, while the life span of the animals extended from 25 to 39 days. The increased survival was corroborated by the activation of innate and adaptive immunity; interestingly, HSP70 was more active in induction of CD8+ cell-mediated toxicity and γIFN production while phloretin contributed largely to the CD56+ cell response. In conclusion, the combination of HSP70 with phloretin could be a novel treatment for efficient immunotherapy of intractable cancers such as skin melanoma.


Assuntos
Proteínas de Choque Térmico HSP70/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Microscopia Confocal/métodos , Floretina/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
13.
J Membr Biol ; 249(1-2): 97-106, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26454655

RESUMO

In this work, we examine the ability of dipole modifiers, flavonoids, and RH dyes to affect the dipole potential (φ d) and phase separation in membranes composed of ternary mixtures of POPC with different sphingolipids and sterols. Changes in the steady-state conductance induced by cation-ionophore complexes have been measured to evaluate the changes in dipole potential of planar lipid bilayers. Confocal fluorescence microscopy has been employed to investigate lipid segregation in giant unilamellar vesicles. The effects of flavonoids on φ d depend on lipid composition and dipole modifier type. The effectiveness of RH dyes to increase φ d depends on sphingolipid type but is not influenced by sterol content. Tested modifiers lead to partial or complete disruption of gel domains in bilayers composed of POPC, sphingomyelin, and cholesterol. Substitution of cholesterol to ergosterol or 7-dehydrocholesterol leads to a loss of fluidizing effects of modifiers except phloretin. This may be due to various compositions of gel domains. The lack of influence of modifiers on phase scenario in vesicles composed of ternary mixtures of POPC, cholesterol, and phytosphingosine or sphinganine is related to an absence of gel-like phase. It was concluded that the membrane lateral heterogeneity affects the dipole-modifying abilities of the agents that influence the magnitude of φ d by intercalation into the bilayer and orientation of its own large dipole moments (phloretin and RH dyes). The efficacy of modifiers that do not penetrate deeply and affect φ d through water adsorption (phlorizin, quercetin, and myricetin) is not influenced by lateral heterogeneity of membrane.


Assuntos
Bicamadas Lipídicas/química , Potenciais da Membrana/efeitos dos fármacos , Colesterol/química , Flavonoides/farmacologia , Lipídeos de Membrana/química , Microscopia Confocal , Estrutura Molecular , Lipossomas Unilamelares
14.
J Membr Biol ; 249(6): 781-787, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27592116

RESUMO

The effects of local anesthetics (LAs), including aminoamides and aminoesters, on the characteristics of single gramicidin A (GA) channels in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers were studied. Aminoamides, namely lidocaine (LDC), prilocaine (PLC), mepivacaine (MPV), and bupivacaine (BPV), reduced the conductance of GA channels. Aminoesters influenced the current fluctuations induced by GA differently; procaine (PC) did not affect the fluctuations, whereas tetracaine (TTC) distinctly reduced the conductance of single GA channels. Using electrophysiological technique, we estimated the changes in the membrane boundary potential at the adsorption of LAs; LDC, PLC, MPV, BPV, and TTC substantially increased, while PC did not affect it. To elucidate which component of the membrane boundary potential, the surface or dipole potential, is responsible for the observed effects of LAs, we employed a fluorescence assay. We found that TTC led to a significant increase in the membrane dipole potential, whereas the adsorption of LDC, PLC, MPV, BPV, and PC did not produce any changes in the membrane dipole potential. We concluded that aminoamides affected the surface potential of lipid bilayers. Together, these data suggest that the effects of LAs on the conductance of single GA channels are caused by their influence on membrane electrostatic potentials; the regulation of GA pores by aminoamides is associated with the surface potential of membranes, whereas TTC modulation of channel properties is predominantly due to changes in dipole potential of lipid bilayers. These data might provide some significant implications for voltage-gated ion channels of cell membranes.


Assuntos
Anestésicos Locais/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Gramicidina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Anestésicos Locais/química , Concentração de Íons de Hidrogênio , Canais Iônicos/metabolismo , Bicamadas Lipídicas , Eletricidade Estática
15.
Eur Biophys J ; 45(1): 91-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26658744

RESUMO

The influence of dipole modifiers on the characteristics of single syringomycin E (SRE) channels in bilayers comprising DOPS, DOPE, sphingolipids (sphingomyelin, N-stearoyl-phytosphingosine or N-stearoyl-sphinganine) and sterols (cholesterol or ergosterol) was studied. The effects of dipole modifiers on SRE channel amplitudes were dependent upon the sphingolipid type and were not affected by the membrane sterol content. A decrease in the dipole potential of phytosphingosine- and sphinganine-containing bilayers, which was induced by the adsorption of phloretin, led to a reduction in conductance; however, an increase in this potential, which occurred upon the addition of RH 421, led to an enhancement in the conductance of SRE channels. Two channel populations, one of which is sensitive while the other is insensitive to modifiers, were found in sphingomyelin-containing bilayers. This indicates that SRE channels are distributed in lipid domains with different dipole potentials.


Assuntos
Bicamadas Lipídicas/química , Peptídeos Cíclicos/química , Esfingomielinas/química , Colesterol/química , Ergosterol/química
16.
J Membr Biol ; 247(8): 739-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25024118

RESUMO

The effects of halogen derivatives of thyronine (tetraiodotironine and triiodothyronine) and fluorescein (Rose Bengal, phloxine B, erythrosin, eosin Y, and fluorescein) on the dipole potential of membranes composed of diphytanoylphosphocholine, diphytanoylphosphoserine, and diphytanoylphosphoethanolamine were investigated. A quantitative description of the modifying action of the agents was presented as characteristic parameters of the Langmuir adsorption isotherm: the maximum changes in the dipole potential of the membrane at an infinitely high concentration of modifiers and the desorption constant, characterizing their inverse affinities to the lipid phase. It was shown that the iodine-containing hormones led to a less significant reduction in the dipole potential of phospholipid membranes compared to the xanthene dyes, Rose Bengal, phloxine B, and erythrosin. The latter were characterized by the highest affinity for the lipid membranes compared to tetraiodotironine and triiodothyronine. It was found that the effect of iodine-containing hormones and xanthene dyes on the membrane dipole potential was caused by their uncharged and charged forms, respectively.


Assuntos
Fluoresceína/farmacologia , Corantes Fluorescentes/farmacologia , Halogênios/química , Bicamadas Lipídicas/química , Potenciais da Membrana/efeitos dos fármacos , Fosfolipídeos/química , Tironinas/farmacologia , Fluoresceína/química , Tironinas/química
17.
Langmuir ; 30(26): 7884-92, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24969512

RESUMO

Cecropin A (CecA) and cecropin B (CecB) added to one side of a bilayer formed from equimolar mixtures of DOPS and DOPE, DPhPS and DPhPE, or DOPS, DOPE, and Chol leads to the formation of well-defined and well-reproducible ion channels of different conductance levels while cecropin P1 (CecP1) does not induce pore formation at micromolar concentrations. We found three populations of CecA channels: pores with weak cationic selectivity, pores with weak anionic selectivity, and pores that were nonselective. The dipole modifiers, flavonoids and styryl dyes, were used to modulate the channel-forming activity of CecA and CecB. The mean conductance of single CecA channels is affected by the influence of dipole modifiers on the lipid packing in the membrane. A decrease in the membrane dipole potential is accompanied by a decrease in the steady-state transmembrane current induced by CecA and CecB in cholesterol-free and cholesterol-containing bilayers. The observed changes in the channel-forming activity might be caused by an increase in the energy barrier for the interfacial accumulation of cecropin monomers. This finding indicates that the negative pole of the cecropin dipole is inserted into the membrane.


Assuntos
Cecropinas/química , Bicamadas Lipídicas/química , Potenciais da Membrana
18.
Eur Biophys J ; 43(4-5): 207-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24563224

RESUMO

The influence of agents, known to affect the membrane dipole potential, phloretin and RH 421, on the multi channel activity of amphotericin B in lipid bilayers of various compositions, was studied. It was shown that the effects were dependent on the membrane's phospholipid and sphingolipid type. Phloretin enhanced amphotericin B induced steady-state transmembrane current through bilayers made from binary mixtures of POPC (DOPC) and ergosterol and ternary mixture of DPhPC, ergosterol and stearoylphytosphingosine. RH 421 increased steady-state polyene induced transmembrane current through membranes made from binary mixtures of DPhPC (DPhPS) and ergosterol and ternary mixture of DPhPS, ergosterol and stearoylphytosphingosine. It was proposed that the observed effects reflect the fine balance of the interactions between the various components present: amphotericin B, ergosterol, phospholipid, sphingolipid and dipole modifier. The shape of lipid molecules seems to be an important factor impacting the responses of amphotericin B modified bilayers to dipole modifiers. The influence of different phospholipids and sphingolipids on the physical and structural properties of ordered lipid microdomains, enriched in AmB, was also discussed. It was also shown that RH 421 enhanced the antifungal activity of amphotericin B in vitro.


Assuntos
Anfotericina B/farmacologia , Membrana Celular/química , Ergosterol/metabolismo , Floretina/farmacologia , Fosfolipídeos , Compostos de Piridínio/farmacologia , Esfingolipídeos , Estirenos/farmacologia , Anfotericina B/química , Anfotericina B/metabolismo , Membrana Celular/metabolismo , Interações Medicamentosas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo
19.
Pharmaceutics ; 16(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794328

RESUMO

BACKGROUND: The threat of antibiotic resistance of fungal pathogens and the high toxicity of the most effective drugs, polyene macrolides, force us to look for new ways to develop innovative antifungal formulations. OBJECTIVE: The aim of this study was to determine how the sterol, phospholipid, and flavonoid composition of liposomal forms of polyene antibiotics, and in particular, amphotericin B (AmB), affects their ability to increase the permeability of lipid bilayers that mimic the membranes of mammalian and fungal cells. METHODS: To monitor the membrane permeability induced by various polyene-based lipid formulations, a calcein leakage assay and the electrophysiological technique based on planar lipid bilayers were used. KEY RESULTS: The replacement of cholesterol with its biosynthetic precursor, 7-dehydrocholesterol, led to a decrease in the ability of AmB-loaded liposomes to permeabilize lipid bilayers mimicking mammalian cell membranes. The inclusion of plant flavonoid phloretin in AmB-loaded liposomes increased the ability of the formulation to disengage a fluorescent marker from lipid vesicles mimicking the membranes of target fungi. I-V characteristics of the fungal-like lipid bilayers treated with the AmB phytosomes were symmetric, demonstrating the functioning of double-length AmB pores and assuming a decrease in the antibiotic threshold concentration. CONCLUSIONS AND PERSPECTIVES: The therapeutic window of polyene lipid formulations might be expanded by varying their sterol composition. Polyene-loaded phytosomes might be considered as the prototypes for innovative lipid antibiotic formulations.

20.
Biomed Pharmacother ; 175: 116723, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723514

RESUMO

The growth of antibiotic resistance to antifungal drugs contributes to the search for new ways to enhance their effectiveness and reduce toxicity. The undeniable advantage of polyene macrolide antibiotic amphotericin B (AmB) which ensures low pathogen resistance is its mechanism of action related to the formation of transmembrane pores in target lipid membranes. Here, we investigated the effects of plant flavones, chrysin, wogonin, baicalein, apigenin, scutellarein, luteolin, morin and fisetin on the pore-forming activity of AmB in the sterol-enriched membranes by electrophysiological assays. Сhrysin, wogonin, baicalein, apigenin, scutellarein, and luteolin were shown to decrease the AmB pore-forming activity in the bilayers composed of palmitoyloleylphosphocholine independently of their sterol composition. Morin and fisetin led to the increase and decrease in the AmB pore-forming activity in the ergosterol- and cholesterol-containing bilayers respectively. Differential scanning microcalorimetry of the gel-to-liquid crystalline phase transition of membrane forming lipids, molecular dynamics simulations, and absorbance spectroscopy revealed the possibility of direct interactions between AmB and some flavones in the water and/or in the lipid bilayer. The influence of these interactions on the antibiotic partitioning between aqueous solution and membrane and/or its transition between different states in the bilayer was discussed.


Assuntos
Anfotericina B , Flavonas , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Anfotericina B/farmacologia , Anfotericina B/química , Flavonas/farmacologia , Flavonas/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Antifúngicos/farmacologia , Antifúngicos/química , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA