Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 157(2): 486-498, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24725413

RESUMO

Cyclin-dependent kinase 5 regulates numerous neuronal functions with its activator, p35. Under neurotoxic conditions, p35 undergoes proteolytic cleavage to liberate p25, which has been implicated in various neurodegenerative diseases. Here, we show that p25 is generated following neuronal activity under physiological conditions in a GluN2B- and CaMKIIα-dependent manner. Moreover, we developed a knockin mouse model in which endogenous p35 is replaced with a calpain-resistant mutant p35 (Δp35KI) to prevent p25 generation. The Δp35KI mice exhibit impaired long-term depression and defective memory extinction, likely mediated through persistent GluA1 phosphorylation at Ser845. Finally, crossing the Δp35KI mice with the 5XFAD mouse model of Alzheimer's disease (AD) resulted in an amelioration of ß-amyloid (Aß)-induced synaptic depression and cognitive impairment. Together, these results reveal a physiological role of p25 production in synaptic plasticity and memory and provide new insights into the function of p25 in Aß-associated neurotoxicity and AD-like pathology.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Calpaína/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cognição , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Endocitose , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Camundongos , Proteínas do Tecido Nervoso/genética , Fosfotransferases , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses
2.
PLoS Biol ; 13(10): e1002282, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26506154

RESUMO

Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology.


Assuntos
Transtorno Depressivo Maior/etiologia , Repressão Enzimática , Proteínas Imediatamente Precoces/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Adulto , Animais , Comportamento Animal , Estudos de Coortes , Espinhas Dendríticas/enzimologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Feminino , Técnicas de Transferência de Genes , Hipocampo/enzimologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/genética , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Neurônios/enzimologia , Neurônios/patologia , Córtex Pré-Frontal/enzimologia , Córtex Pré-Frontal/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Ratos Sprague-Dawley , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos/patologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Transmissão Sináptica , Bancos de Tecidos
3.
Neurobiol Dis ; 82: 254-261, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26102021

RESUMO

Clinical studies demonstrate that scopolamine, a non-selective muscarinic acetylcholine receptor (mAchR) antagonist, produces rapid therapeutic effects in depressed patients, and preclinical studies report that the actions of scopolamine require glutamate receptor activation and the mechanistic target of rapamycin complex 1 (mTORC1). The present study extends these findings to determine the role of the medial prefrontal cortex (mPFC) and specific muscarinic acetylcholine receptor (M-AchR) subtypes in the actions of scopolamine. The administration of scopolamine increases the activity marker Fos in the mPFC, including the infralimbic (IL) and prelimbic (PrL) subregions. Microinfusions of scopolamine into either the IL or the PrL produced significant antidepressant responses in the forced swim test, and neuronal silencing of IL or PrL blocked the antidepressant effects of systemic scopolamine. The results also demonstrate that the systemic administration of a selective M1-AChR antagonist, VU0255035, produced an antidepressant response and stimulated mTORC1 signaling in the PFC, similar to the actions of scopolamine. Finally, we used a chronic unpredictable stress model as a more rigorous test of rapid antidepressant actions and found that a single dose of scopolamine or VU0255035 blocked the anhedonic response caused by CUS, an effect that requires the chronic administration of typical antidepressants. Taken together, these findings indicate that mPFC is a critical mediator of the behavioral actions of scopolamine and identify the M1-AChR as a therapeutic target for the development of novel and selective rapid-acting antidepressants.


Assuntos
Antidepressivos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptor Muscarínico M1/metabolismo , Escopolamina/farmacologia , Anedonia/efeitos dos fármacos , Anedonia/fisiologia , Animais , Doença Crônica , Sacarose Alimentar , Modelos Animais de Doenças , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Microinjeções , Complexos Multiproteicos/metabolismo , Antagonistas Muscarínicos/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Receptor Muscarínico M1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Sulfonamidas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Tiadiazóis/farmacologia , Fatores de Tempo , Técnicas de Cultura de Tecidos
4.
J Neurosci ; 33(21): 8951-60, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23699506

RESUMO

Caloric restriction (CR) is a dietary regimen known to promote lifespan by slowing down the occurrence of age-dependent diseases. The greatest risk factor for neurodegeneration in the brain is age, from which follows that CR might also attenuate the progressive loss of neurons that is often associated with impaired cognitive capacities. In this study, we used a transgenic mouse model that allows for a temporally and spatially controlled onset of neurodegeneration to test the potentially beneficial effects of CR. We found that in this model, CR significantly delayed the onset of neurodegeneration and synaptic loss and dysfunction, and thereby preserved cognitive capacities. Mechanistically, CR induced the expression of the known lifespan-regulating protein SIRT1, prompting us to test whether a pharmacological activation of SIRT1 might recapitulate CR. We found that oral administration of a SIRT1-activating compound essentially replicated the beneficial effects of CR. Thus, SIRT1-activating compounds might provide a pharmacological alternative to the regimen of CR against neurodegeneration and its associated ailments.


Assuntos
Restrição Calórica/métodos , Transtornos Cognitivos/terapia , Doenças Neurodegenerativas/complicações , Sirtuína 1/metabolismo , Análise de Variância , Animais , Atrofia/etiologia , Atrofia/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/ultraestrutura , Estudos de Casos e Controles , Transtornos Cognitivos/etiologia , Quinase 5 Dependente de Ciclina/genética , Modelos Animais de Doenças , Método Duplo-Cego , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Imunoprecipitação , Técnicas In Vitro , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/patologia , Fosfopiruvato Hidratase/metabolismo , Fosfotransferases , Piperidinas/uso terapêutico , Coloração pela Prata , Sirtuína 1/genética , Sinapses/patologia , Tiazóis/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Vitamina E/administração & dosagem
5.
Neurobiol Dis ; 57: 28-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22691453

RESUMO

Atrophy of neurons and gross structural alterations of limbic brain regions, including the prefrontal cortex (PFC) and hippocampus, have been reported in brain imaging and postmortem studies of depressed patients. Preclinical findings have suggested that prolonged negative stress can induce changes comparable to those seen in major depressive disorder (MDD), through dendritic retraction and decreased spine density in PFC and hippocampal CA3 pyramidal neurons. Interestingly, recent studies have suggested that environmental and pharmacological manipulations, including antidepressant medication, exercise, and diet, can block or even reverse many of the molecular changes induced by stress, providing a clear link between these factors and susceptibility to MDD. In this review, we will discuss the environmental and pharmacological factors, as well as the contribution of genetic polymorphisms, involved in the regulation of neuronal morphology and plasticity in MDD and preclinical stress models. In particular, we will highlight the pro-depressive changes incurred by stress and the reversal of these changes by antidepressants, exercise, and diet.


Assuntos
Transtorno Depressivo Maior/patologia , Fatores de Crescimento Neural/metabolismo , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/terapia , Terapia por Exercício , Ácidos Graxos Ômega-3/uso terapêutico , Humanos , Fatores de Crescimento Neural/uso terapêutico , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
6.
Brain Behav Immun ; 31: 105-14, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23261775

RESUMO

Stress is a common occurrence in everyday life and repeated or traumatic stress can be a precipitating factor for illnesses of the central nervous system, as well as peripheral organ systems. For example, severe or long-term psychological stress can not only induce depression, a leading illness worldwide, but can also cause psychosomatic diseases such as asthma and rheumatoid arthritis. Related key questions include how psychological stress influences both brain and peripheral systems, and what detection mechanisms underlie these effects? A clue is provided by the discovery of the pathways underlying the responses to host "danger" substances that cause systemic diseases, but can also contribute to depression. The inflammasome is a protein complex that can detect diverse danger signals and produce the accompanying immune-inflammatory reactions. Interestingly, the inflammasome can detect not only pathogen-associated molecules, but also cell damage-associated molecules such as ATP. Here, we propose a new inflammasome hypothesis of depression and related comorbid systemic illnesses. According to this hypothesis, the inflammasome is a central mediator by which psychological and physical stressors can contribute to the development of depression, and as well as a bridge to systemic diseases. This hypothesis includes an explanation for how psychological stress can influence systemic diseases, and conversely how systemic diseases can lead to psychiatric illnesses. The evidence suggests that the inflammasome may be a new target for the development of treatments for depression, as well as psychosomatic and somato-psycho diseases.


Assuntos
Transtorno Depressivo/complicações , Inflamação/complicações , Estresse Psicológico/complicações , Humanos , Modelos Teóricos
7.
Learn Mem ; 17(4): 221-35, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20351057

RESUMO

We have recently hypothesized that NO-cGMP-PKG signaling in the lateral nucleus of the amygdala (LA) during auditory fear conditioning coordinately regulates ERK-driven transcriptional changes in both auditory thalamic (MGm/PIN) and LA neurons that serve to promote pre- and postsynaptic alterations at thalamo-LA synapses, respectively. In the present series of experiments, we show that N-methyl-D-aspartate receptor (NMDAR)-driven synaptic plasticity and NO-cGMP-PKG signaling in the LA regulate the training-induced expression of ERK and the ERK-driven immediate early genes (IEGs) Arc/Arg3.1, c-Fos, and EGR-1 in the LA and the MGm/PIN. Rats receiving intra-LA infusion of the NR2B selective antagonist Ifenprodil, the NOS inhibitor 7-Ni, or the PKG inhibitor Rp-8-Br-PET-cGMPS exhibited significant decreases in ERK activation and in the training-induced expression of all three IEGs in the LA and MGm/PIN while intra-LA infusion of the PKG activator 8-Br-cGMP had the opposite effect. Remarkably, those rats given intra-LA infusion of the membrane impermeable NO scavenger c-PTIO exhibited significant decreases in ERK activation and ERK-driven IEG expression in the MGm/PIN, but not in the LA. Together with our previous experiments, these results suggest that synaptic plasticity and the NO-cGMP-PKG signaling pathway promote fear memory consolidation, in part, by regulating ERK-driven transcription in both the LA and the MGm/PIN. They further suggest that synaptic plasticity in the LA during fear conditioning promotes ERK-driven transcription in MGm/PIN neurons via NO-driven "retrograde signaling."


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Medo , Regulação da Expressão Gênica/fisiologia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Tálamo/fisiologia , Estimulação Acústica/efeitos adversos , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Comportamento Animal , Condicionamento Clássico/efeitos dos fármacos , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Medo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Modelos Biológicos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Fatores de Tempo
8.
Learn Mem ; 15(10): 792-805, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18832566

RESUMO

Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and long-term potentiation (LTP) at thalamic and cortical input pathways to the LA. In behavioral experiments, rats given intra-LA infusions of either the PKG inhibitor Rp-8-Br-PET-cGMPS or the PKG activator 8-Br-cGMP exhibited dose-dependent impairments or enhancements of fear memory consolidation, respectively. In slice electrophysiology experiments, bath application of Rp-8-Br-PET-cGMPS or the guanylyl cyclase inhibitor LY83583 impaired LTP at thalamic, but not cortical inputs to the LA, while bath application of 8-Br-cGMP or the guanylyl cyclase activator YC-1 resulted in enhanced LTP at thalamic inputs to the LA. Interestingly, YC-1-induced enhancement of LTP in the LA was reversed by concurrent application of the MEK inhibitor U0126, suggesting that the NO-cGMP-PKG signaling pathway may promote synaptic plasticity and fear memory formation in the LA, in part by activating the ERK/MAPK signaling cascade. As a test of this hypothesis, we next showed that rats given intra-LA infusion of the PKG inhibitor Rp-8-Br-PET-cGMPS or the PKG activator 8-Br-cGMP exhibit impaired or enhanced activation, respectively, of ERK/MAPK in the LA after fear conditioning. Collectively, our findings suggest that an NO-cGMP-PKG-dependent form of synaptic plasticity at thalamic input synapses to the LA may underlie memory consolidation of Pavlovian fear conditioning, in part, via activation of the ERK/MAPK signaling cascade.


Assuntos
Tonsila do Cerebelo/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Condicionamento Clássico , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Medo/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia
9.
Neuropsychopharmacology ; 42(10): 2032-2042, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27922594

RESUMO

The CACNA1C gene that encodes the L-type Ca2+ channel (LTCC) Cav1.2 subunit has emerged as a candidate risk gene for multiple neuropsychiatric disorders including bipolar disorder, major depressive disorder, and schizophrenia, all marked with depression-related symptoms. Although cacna1c heterozygous (HET) mice have been previously reported to exhibit an antidepressant-like phenotype, the molecular and circuit-level dysfunction remains unknown. Here we report that viral vector-mediated deletion of cacna1c in the adult prefrontal cortex (PFC) of mice recapitulates the antidepressant-like effect observed in cacna1c HET mice using the sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST). Molecular studies identified lower levels of REDD1, a protein previously linked to depression, in the PFC of HET mice, and viral-mediated REDD1 overexpression in the PFC of these HET mice reversed the antidepressant-like effect in SPT and TST. Examination of downstream REDD1 targets found lower levels of active/phosphorylated Akt (S473) with no change in mTORC1 phosphorylation. Examination of the transcription factor FoxO3a, previously linked to depression-related behavior and shown to be regulated in other systems by Akt, revealed higher nuclear levels in the PFC of cacna1c HET mice that was further increased following REDD1-mediated reversal of the antidepressant-like phenotype. Collectively, these findings suggest that REDD1 in cacna1c HET mice may influence depression-related behavior via regulation of the FoxO3a pathway. Cacna1c HET mice thus serve as a useful mouse model to further study cacna1c-associated molecular signaling and depression-related behaviors relevant to human CACNA1C genetic variants.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Transtorno Depressivo/metabolismo , Córtex Pré-Frontal/metabolismo , Fatores de Transcrição/metabolismo , Anedonia/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Canais de Cálcio Tipo L/genética , Transtorno Depressivo/patologia , Sacarose Alimentar , Modelos Animais de Doenças , Comportamento Alimentar/fisiologia , Proteína Forkhead Box O3/metabolismo , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Fosforilação , Córtex Pré-Frontal/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Neuropsychopharmacology ; 41(7): 1874-87, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26658303

RESUMO

Depression and type 2 diabetes (T2D) are highly comorbid disorders that carry a large public health burden. However, there is a clear lack of knowledge of the neural pathological pathways underlying these illnesses. The present study aims to elucidate the molecular mechanisms by which a diet rich in fat can cause multiple complications in the brain, thereby affecting intracellular signaling and gene expression that underlie anxiety and depressive behaviors. The results show that a high-fat diet (HFD; ~16 weeks) causes anxiety and anhedonic behaviors. Importantly, the results also show that 4 months of HFD causes disruption of intracellular cascades involved in synaptic plasticity and insulin signaling/glucose homeostasis (ie, Akt, extracellular signal-regulated kinase (ERK), P70S6K), as well as increased corticosterone levels and activation of the innate immune system, including elevation of inflammatory cytokines (ie, IL-6, IL-1ß, TNFα). Interestingly, the rapid acting antidepressant ketamine reverses the behavioral deficits caused by HFD and activates ERK and P70S6 kinase signaling in the prefrontal cortex. In addition, we found that pharmacological blockade of the innate immune inflammasome system by repeated administration of an inhibitor of the purinergic P2X7 receptor blocks the anxiety caused by HFD. Together these studies further elucidate the signaling pathways that underlie chronic HFD exposure on anxiety and depressive behaviors, and identify novel therapeutic targets for patients with metabolic disorder or T2D who suffer from anxiety and depression.


Assuntos
Anedonia/efeitos dos fármacos , Ansiedade , Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/etiologia , Animais , Ansiedade/complicações , Ansiedade/etiologia , Ansiedade/patologia , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Corticosterona/sangue , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Alimentar , Preferências Alimentares/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/farmacologia , Hiperglicemia/induzido quimicamente , Masculino , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
11.
Biol Psychiatry ; 80(1): 12-22, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831917

RESUMO

BACKGROUND: The mechanisms underlying stress-induced inflammation that contribute to major depressive disorder are unknown. We examine the role of the adenosine triphosphate (ATP)/purinergic type 2X7 receptor (P2X7R) pathway and the NLRP3 (nucleotide-binding, leucine-rich repeat, pyrin domain containing 3) inflammasome in interleukin (IL)-1ß and depressive behavioral responses to stress. METHODS: The influence of acute restraint stress on extracellular ATP, glutamate, IL-1ß, and tumor necrosis factor alpha in hippocampus was determined by microdialysis, and the influence of acute restraint stress on the NLRP3 inflammasome was determined by western blot analysis. The influence of P2X7R antagonist administration on IL-1ß and tumor necrosis factor alpha and on anxiety and depressive behaviors was determined in the chronic unpredictable stress rodent model. The role of the NLRP3 inflammasome was determined by analysis of Nlrp3 null mice. RESULTS: Acute restraint stress rapidly increased extracellular ATP, an endogenous agonist of P2X7R; the inflammatory cytokine IL-1ß; and the active form of the NLRP3 inflammasome in the hippocampus. Administration of a P2X7R antagonist completely blocked the release of IL-1ß and tumor necrosis factor alpha, another stress-induced cytokine, and activated NLRP3. Moreover, P2X7R antagonist administration reversed the anhedonic and anxiety behaviors caused by chronic unpredictable stress exposure, and deletion of the Nlrp3 gene rendered mice resistant to development of depressive behaviors caused by chronic unpredictable stress. CONCLUSIONS: These findings demonstrate that psychological "stress" is sensed by the innate immune system in the brain via the ATP/P2X7R-NLRP3 inflammasome cascade, and they identify novel therapeutic targets for the treatment of stress-related mood disorders and comorbid illnesses.


Assuntos
Trifosfato de Adenosina/metabolismo , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Depressão/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Estresse Psicológico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anedonia/fisiologia , Animais , Ansiedade/etiologia , Ansiedade/imunologia , Depressão/etiologia , Depressão/imunologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Agonistas do Receptor Purinérgico P2Y/metabolismo , Antagonistas do Receptor Purinérgico P2Y/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Estresse Psicológico/imunologia
12.
Neuropsychopharmacology ; 40(3): 711-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25178406

RESUMO

Major depressive disorder (MDD) is a debilitating and widespread illness that exerts significant personal and socioeconomic consequences. Recent genetic and brain-imaging studies suggest that bicaudal C homolog 1 gene (BICC1), which codes for an RNA-binding protein, may be associated with depression. Here, we show that BICC1 mRNA is upregulated in the dorsolateral prefrontal cortex and dentate gyrus of human postmortem MDD patients. We also show that BICC1 is increased in the prefrontal cortex and hippocampus in the rat chronic unpredictable stress (CUS) model of depression. In addition, we show in vivo that a single acute antidepressant dose of ketamine leads to a rapid decrease of BICC1 mRNA, while in vitro, we show that this is likely due to neuronal activity-induced downregulation of BICC1. Finally, we show that BICC1 knockdown in the hippocampus protects rats from CUS-induced anhedonia. Taken together, these findings identify a role for increased levels of BICC1 in the pathophysiology of depressive behavior.


Assuntos
Transtorno Depressivo Maior/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima , Anedonia/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Estudos de Casos e Controles , Giro Denteado/metabolismo , Transtorno Depressivo Maior/genética , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Humanos , Imobilização/psicologia , Ketamina/farmacologia , Masculino , Córtex Pré-Frontal/metabolismo , Cultura Primária de Células , Proteínas de Ligação a RNA/genética , Ratos , Regulação para Cima/efeitos dos fármacos
13.
Neuropsychopharmacology ; 40(9): 2066-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25759300

RESUMO

A single sub-anesthetic dose of ketamine, a short-acting NMDA receptor blocker, induces a rapid and prolonged antidepressant effect in treatment-resistant major depression. In animal models, ketamine (24 h) reverses depression-like behaviors and associated deficits in excitatory postsynaptic currents (EPSCs) generated in apical dendritic spines of layer V pyramidal cells of medial prefrontal cortex (mPFC). However, little is known about the effects of ketamine on basal dendrites. The basal dendrites of layer V cells receive an excitatory input from pyramidal cells of the basolateral amygdala (BLA), neurons that are activated by the stress hormone CRF. Here we found that CRF induces EPSCs in PFC layer V cells and that ketamine enhanced this effect through the mammalian target of rapamycin complex 1 synaptogenic pathway; the CRF-induced EPSCs required an intact BLA input and were generated primarily in basal dendrites. In contrast to its detrimental effects on apical dendritic structure and function, chronic stress did not induce a loss of CRF-induced EPSCs in basal dendrites, thereby creating a relative imbalance in favor of amygdala inputs. The effects of ketamine were complex: ketamine enhanced apical EPSC responses in all mPFC subregions, anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) but enhanced CRF-induced EPSCs only in AC and PL-responses were unchanged in IL, a critical area for suppression of stress responses. We propose that by restoring the strength of apical inputs relative to basal amygdala inputs, especially in IL, ketamine would ameliorate the hypothesized disproportional negative influence of the amygdala in chronic stress and major depression.


Assuntos
Tonsila do Cerebelo/fisiologia , Hormônio Liberador da Corticotropina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Córtex Pré-Frontal/citologia , Células Piramidais/efeitos dos fármacos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/lesões , Animais , Dendritos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Sistema Límbico/citologia , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiologia , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley
14.
Eur Neuropsychopharmacol ; 24(12): 1896-906, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25464894

RESUMO

Tic disorders produce substantial morbidity, but their pathophysiology remains poorly understood. Convergent evidence suggests that dysregulation of the cortico-basal ganglia circuitry is central to the pathogenesis of tics. Tourette syndrome (TS), the most severe end of the continuum of tic disorders, is substantially genetic, but causative mutations have been elusive. We recently described a mouse model, the histidine decarboxylase (Hdc) knockout mouse, that recapitulates a rare, highly penetrant mutation found in a single family; these mice exhibit TS-like phenomenology. These animals have a global deficit in brain histamine and a consequent dysregulation of DA in the basal ganglia. Histamine modulation of DA effects is increasingly appreciated, but the mechanisms underlying this modulation remain unclear; the consequences of modest DA elevation in the context of profound HA deficiency are difficult to predict, but understanding them in the Hdc knockout mouse may provide generalizable insights into the pathophysiology of TS. Here we characterized signaling pathways in striatal cells in this model system, at baseline and after amphetamine challenge. In vivo microdialysis confirms elevated DA in Hdc-KO mice. We find dephosphorylation of Akt and its target GSK3ß and activation of the MAPK signaling cascade and its target rpS6; these are characteristic of the effects of DA on D2- and D1-expressing striatal neurons, respectively. Strikingly, there is no alteration in mTOR signaling, which can be regulated by DA in both cell types. These cellular effects help elucidate striatal signaling abnormalities in a uniquely validated mouse model of TS and move towards the identification of new potential therapeutic targets for tic disorders.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Histidina Descarboxilase/genética , Transdução de Sinais/efeitos dos fármacos , Síndrome de Tourette/metabolismo , Anfetamina/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Proteína S6 Ribossômica/metabolismo , Serina-Treonina Quinases TOR/metabolismo
15.
PLoS One ; 9(3): e91530, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618807

RESUMO

Chronic exposure to stress has been widely implicated in the development of anxiety disorders, yet relatively little is known about the long-term effects of chronic stress on amygdala-dependent memory formation. Here, we examined the effects of a history of chronic exposure to the stress-associated adrenal steroid corticosterone (CORT) on the consolidation of a fear memory and the expression of memory-related immediate early genes (IEGs) in the lateral nucleus of the amygdala (LA). Rats received chronic exposure to CORT (50 µg/ml) in their drinking water for 2 weeks and were then titrated off the CORT for an additional 6 days followed by a 2 week 'wash-out' period consisting of access to plain water. Rats were then either sacrificed to examine the expression of memory-related IEG expression in the LA or given auditory Pavlovian fear conditioning. We show that chronic exposure to CORT leads to a persistent elevation in the expression of the IEGs Arc/Arg3.1 and Egr-1 in the LA. Further, we show that rats with a history of chronic CORT exposure exhibit enhanced consolidation of a fear memory; short-term memory (STM) is not affected, while long-term memory (LTM) is significantly enhanced. Treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine following the chronic CORT exposure period was observed to effectively reverse both the persistent CORT-related increases in memory-related IEG expression in the LA and the CORT-related enhancement in fear memory consolidation. Our findings suggest that chronic exposure to CORT can regulate memory-related IEG expression and fear memory consolidation processes in the LA in a long-lasting manner and that treatment with fluoxetine can reverse these effects.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Corticosterona/administração & dosagem , Medo/psicologia , Regulação da Expressão Gênica/efeitos dos fármacos , Memória , Animais , Comportamento Animal/efeitos dos fármacos , Fluoxetina/administração & dosagem , Genes Precoces , Masculino , Ratos , Transdução de Sinais , Estresse Psicológico , Sinapses/metabolismo
16.
Nat Med ; 20(5): 531-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24728411

RESUMO

Major depressive disorder (MDD) affects up to 17% of the population, causing profound personal suffering and economic loss. Clinical and preclinical studies have revealed that prolonged stress and MDD are associated with neuronal atrophy of cortical and limbic brain regions, but the molecular mechanisms underlying these morphological alterations have not yet been identified. Here, we show that stress increases levels of REDD1 (regulated in development and DNA damage responses-1), an inhibitor of mTORC1 (mammalian target of rapamycin complex-1; ref. 10), in rat prefrontal cortex (PFC). This is concurrent with a decrease in phosphorylation of signaling targets of mTORC1, which is implicated in protein synthesis-dependent synaptic plasticity. We also found that REDD1 levels are increased in the postmortem PFC of human subjects with MDD relative to matched controls. Mutant mice with a deletion of the gene encoding REDD1 are resilient to the behavioral, synaptic and mTORC1 signaling deficits caused by chronic unpredictable stress, whereas viral-mediated overexpression of REDD1 in rat PFC is sufficient to cause anxiety- and depressive-like behaviors and neuronal atrophy. Taken together, these postmortem and preclinical findings identify REDD1 as a critical mediator of the atrophy of neurons and depressive behavior caused by chronic stress exposure.


Assuntos
Transtornos de Ansiedade/genética , Transtorno Depressivo Maior/genética , Sinapses/patologia , Fatores de Transcrição/genética , Animais , Transtornos de Ansiedade/etiologia , Transtornos de Ansiedade/patologia , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Ratos , Transdução de Sinais , Sinapses/genética , Sinapses/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
17.
PLoS One ; 6(5): e19958, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625500

RESUMO

Epigenetic mechanisms, including histone acetylation and DNA methylation, have been widely implicated in hippocampal-dependent learning paradigms. Here, we have examined the role of epigenetic alterations in amygdala-dependent auditory Pavlovian fear conditioning and associated synaptic plasticity in the lateral nucleus of the amygdala (LA) in the rat. Using Western blotting, we first show that auditory fear conditioning is associated with an increase in histone H3 acetylation and DNMT3A expression in the LA, and that training-related alterations in histone acetylation and DNMT3A expression in the LA are downstream of ERK/MAPK signaling. Next, we show that intra-LA infusion of the histone deacetylase (HDAC) inhibitor TSA increases H3 acetylation and enhances fear memory consolidation; that is, long-term memory (LTM) is enhanced, while short-term memory (STM) is unaffected. Conversely, intra-LA infusion of the DNA methyltransferase (DNMT) inhibitor 5-AZA impairs fear memory consolidation. Further, intra-LA infusion of 5-AZA was observed to impair training-related increases in H3 acetylation, and pre-treatment with TSA was observed to rescue the memory consolidation deficit induced by 5-AZA. In our final series of experiments, we show that bath application of either 5-AZA or TSA to amygdala slices results in significant impairment or enhancement, respectively, of long-term potentiation (LTP) at both thalamic and cortical inputs to the LA. Further, the deficit in LTP following treatment with 5-AZA was observed to be rescued at both inputs by co-application of TSA. Collectively, these findings provide strong support that histone acetylation and DNA methylation work in concert to regulate memory consolidation of auditory fear conditioning and associated synaptic plasticity in the LA.


Assuntos
Tonsila do Cerebelo/fisiologia , Epigênese Genética , Medo , Memória , Plasticidade Neuronal/genética , Acetilação , Animais , Metilação de DNA , Histonas/metabolismo , Ratos
18.
PLoS One ; 5(6): e11236, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20574537

RESUMO

In vertebrate models of synaptic plasticity, signaling via the putative "retrograde messenger" nitric oxide (NO) has been hypothesized to serve as a critical link between functional and structural alterations at pre- and postsynaptic sites. In the present study, we show that auditory Pavlovian fear conditioning is associated with significant and long-lasting increases in the expression of the postsynaptically-localized protein GluR1 and the presynaptically-localized proteins synaptophysin and synapsin in the lateral amygdala (LA) within 24 hrs following training. Further, we show that rats given intra-LA infusion of either the NR2B-selective antagonist Ifenprodil, the NOS inhibitor 7-Ni, or the PKG inhibitor Rp-8-Br-PET-cGMPS exhibit significant decreases in training-induced expression of GluR1, synaptophysin, and synapsin immunoreactivity in the LA, while those rats infused with the PKG activator 8-Br-cGMP exhibit a significant increase in these proteins in the LA. In contrast, rats given intra-LA infusion of the NO scavenger c-PTIO exhibit a significant decrease in synapsin and synaptophysin expression in the LA, but no significant impairment in the expression of GluR1. Finally, we show that intra-LA infusions of the ROCK inhibitor Y-27632 or the CaMKII inhibitor KN-93 impair training-induced expression of GluR1, synapsin, and synaptophysin in the LA. These findings suggest that the NO-cGMP-PKG, Rho/ROCK, and CaMKII signaling pathways regulate fear memory consolidation, in part, by promoting both pre- and post-synaptic alterations at LA synapses. They further suggest that synaptic plasticity in the LA during auditory fear conditioning promotes alterations at presynaptic sites via NO-driven "retrograde signaling".


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Condicionamento Psicológico , Medo , Plasticidade Neuronal , Transdução de Sinais , Sinapses/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Regulação da Expressão Gênica , Masculino , Óxido Nítrico/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Quinases Associadas a rho/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-20161806

RESUMO

In both invertebrate and vertebrate models of synaptic plasticity, signaling via the putative "retrograde messenger" nitric oxide (NO) has been hypothesized to serve as a critical link between functional and structural alterations at pre- and postsynaptic sites. However, while in vitro models of synaptic plasticity have consistently implicated NO signaling in linking postsynaptic induction mechanisms with accompanying presynaptic changes, a convincing role of such "retrograde signaling" in mammalian memory formation has remained elusive. Using auditory Pavlovian fear conditioning, we show that synaptic plasticity and NO signaling in the lateral nucleus of the amygdala (LA) regulate the expression of the ERK-driven immediate early gene early growth response gene I (EGR-1) in regions of the auditory thalamus that are presynaptic to the LA. Further, antisense knockdown of EGR-1 in the auditory thalamus impairs both fear memory consolidation and the training-induced elevation of two presynaptically localized proteins in the LA. These findings indicate that synaptic plasticity and NO signaling in the LA during auditory fear conditioning promote alterations in ERK-driven gene expression in auditory thalamic neurons that are required for both fear memory consolidation as well as presynaptic correlates of fear memory formation in the LA, and provide general support for a role of NO as a "retrograde signal" in mammalian memory formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA