Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Environ Manage ; 321: 115927, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994957

RESUMO

Soil Aquifer Treatment (SAT) is used to increase groundwater resources and enhance the water quality of wastewater treatment plant (WWTP) effluents. The resulting water quality needs to be assessed. In this study, we investigate attenuation pathways of nitrogen (N) compounds (predominantly NH4+) from a secondary treatment effluent in pilot SAT systems: both a conventional one (SAT-Control system) and one operating with a permeable reactive barrier (PRB) to provide extra dissolved organic carbon to the recharged water. The goal is to evaluate the effectiveness of the two systems regarding N compounds by means of chemical and isotopic tools. Water chemistry (NO3-, NH4+, Non-Purgeable Dissolved Organic Carbon (NPDOC), and O2) and isotopic composition of NO3- (ẟ15N-NO3- and ẟ18O-NO3-) and NH4+ (ẟ15N-NH4+) were monitored in the inflow and at three different sections and depths along the aquifer flow path. Chemical and isotopic results suggest that coupled nitrification-denitrification were the principal mechanisms responsible for the migration and distribution of inorganic N in the systems and that nitrification rate decreased with depth. At the end of the study period, 66% of the total N in the solution was removed in the SAT-PRB system and 69% in the SAT-Control system, measured at the outlet of the systems. The residual N in solution in the SAT-PRB system had an approximately equal proportion of N-NH4+ and N-NO3- while in the SAT-Control system, the residual N in solution was primarily N-NO3-. Isotopic data also confirmed complete NO3- degradation in the systems from July to September with the possibility of mixing newly generated NO3- with the residual NO3- in the substrate pool.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Desnitrificação , Água Subterrânea/química , Nitratos/análise , Nitrogênio/análise , Solo , Águas Residuárias , Poluentes Químicos da Água/análise
2.
J Environ Manage ; 245: 86-94, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150913

RESUMO

Improving the effectiveness and economics of strategies to remediate groundwater nitrate pollution is a matter of concern. In this context, the addition of whey into aquifers could provide a feasible solution to attenuate nitrate contamination by inducing heterotrophic denitrification, while recycling an industry residue. Before its application, the efficacy of the treatment must be studied at laboratory-scale to optimize the application strategy in order to avoid the generation of harmful intermediate compounds. To do this, a flow-through denitrification experiment using whey as organic C source was performed, and different C/N ratios and injection periodicities were tested. The collected samples were analyzed to determine the chemical and isotopic composition of N and C compounds. The results proved that whey could promote denitrification. Nitrate was completely removed when using either a 3.0 or 2.0 C/N ratio. However, daily injection with C/N ratios from 1.25 to 1.5 seemed advantageous, since this strategy decreased nitrate concentration to values below the threshold for water consumption while avoiding nitrite accumulation and whey release with the outflow. The isotopic results confirmed that nitrate attenuation was due to denitrification and that the production of DIC was related to bacterial whey oxidation. Furthermore, the isotopic data suggested that when denitrification was not complete, the outflow could present a mix of denitrified and nondenitrified water. The calculated isotopic fractionation values (ε15NNO3/N2 and ε18ONO3/N2) might be applied in the future to quantify the efficiency of the bioremediation treatments by whey application at field-scale.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Indústria de Laticínios , Desnitrificação , Nitratos
3.
Environ Sci Technol ; 48(3): 1869-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24410407

RESUMO

Laboratory and field-scale pilot experiments were performed to evaluate the feasibility of chloroform degradation by alkaline hydrolysis and the potential of δ(13)C values to assess this induced reaction process at contaminated sites. In batch experiments, alkaline conditions were induced by adding crushed concrete (pH 12.33 ± 0.07), a filtered concrete solution (pH 12.27 ± 0.04), a filtered cement solution (pH 12.66 ± 0.02) and a pH 12 buffer solution (pH 11.92 ± 0.11). The resulting chloroform degradation after 28 days was 94, 96, 99, and 72%, respectively. The experimental data were described using a pseudo-first-order kinetic model, resulting in pseudo-first-order rate constant values of 0.10, 0.12, 0.20, and 0.05 d(-1), respectively. Furthermore, the significant chloroform carbon isotopic fractionation associated with alkaline hydrolysis of chloroform (-53 ± 3‰) and its independence from pH in the admittedly limited tested pH range imply a great potential for the use of δ(13)C values for in situ monitoring of the efficacy of remediation approaches based on alkaline hydrolysis. The carbon isotopic fractionation obtained at the lab scale allowed the calculation of the percentage of chloroform degradation in field-scale pilot experiments where alkaline conditions were induced in two recharge water interception trenches filled with concrete-based construction wastes. A maximum of approximately 30-40% of chloroform degradation was achieved during the two studied recharge periods. Although further research is required, the treatment of chloroform in groundwater through the use of concrete-based construction wastes is proposed. This strategy would also imply the recycling of construction and demolition wastes for use in value-added applications to increase economic and environmental benefits.


Assuntos
Clorofórmio/química , Materiais de Construção , Poluentes Químicos da Água/química , Isótopos de Carbono/análise , Tetracloreto de Carbono/química , Fracionamento Químico , Estudos de Viabilidade , Concentração de Íons de Hidrogênio , Hidrólise , Água
5.
Sci Total Environ ; 931: 172858, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38714260

RESUMO

Multi-element compound-specific stable isotope analysis (ME-CSIA) allows monitoring the environmental behavior and transformation of most common and persistent contaminants. Recent advancements in analytical techniques have extended the applicability of ME-CSIA to organic micropollutants, including pesticides. Nevertheless, the application of this methodology remains unexplored concerning harmful insecticides such as methoxychlor, a polar organochlorine pesticide usually detected in soil and groundwater. This study introduces methods for dual carbon and chlorine compound-specific stable isotope analysis (δ13C-CSIA and δ37Cl-CSIA) of both methoxychlor and its metabolite, methoxychlor olefin, with a sensitivity down to 10 and 100 mg/L, and a precision lower than 0.3 and 0.5 ‰ for carbon and chlorine CSIA, respectively. Additionally, three extraction and preconcentration techniques suitable for ME-CSIA of the target pesticides at environmentally relevant concentrations were also developed. Solid-phase extraction (SPE) and liquid-solid extraction (LSE) effectively extracted methoxychlor (107 ± 27 % and 87 ± 13 %, respectively) and its metabolite (91 ± 27 % and 106 ± 14 %, respectively) from water and aquifer slurry samples, respectively, with high accuracy (Δδ13C and Δδ37Cl ≤ ± 1 ‰). Combining CSIA with polar organic chemical integrative samplers (POCISs) for the extraction of methoxychlor and methoxychlor olefin from water samples resulted in insignificant fractionation for POCIS-CSIA (Δδ13C ≤ ± 1 ‰). A relevant sorption of methoxychlor was detected within the polyethersulfones membranes of the POCISs resulting in temporary carbon isotope fractionation depending on the sorbed mass fraction during the first deployment days. This highlights the critical role of the interactions of polar analytes with POCIS sorbents and membranes in the performance of this method. Altogether, this study proposes a proof of concept for ME-CSIA of methoxychlor and its metabolites, opening the door for future investigations of their sources and transformation processes in contaminated sites.

6.
J Hazard Mater ; 480: 135929, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39321483

RESUMO

This study investigates the use of multi-element compound-specific isotope analysis (ME-CSIA) to monitor degradation processes of methoxychlor, a persistent organochlorine insecticide. Laboratory experiments examined the kinetics, release of transformation products, and carbon and chlorine isotope effects during methoxychlor degradation through alkaline hydrolysis, oxidation with alkaline-activated persulfate, and biotic reductive dechlorination. Results showed that hydrolysis and oxidation did not cause significant carbon and chlorine isotope fractionation, indicating that C-H rather than C-Cl bond cleavage was the rate-determining step. Conversely, biotic reductive dechlorination by a field-derived microcosm under strictly anoxic conditions displayed significant carbon (εC = -0.9 ± 0.3 ‰) and chlorine (εCl = -1.9 ± 1.0 ‰) isotope fractionation. Its corresponding calculated dual isotope slope (ΛC/Cl = 0.4 ± 0.1) and apparent kinetic isotope effects (AKIEC = 1.014 ± 0.005 and AKIECl = 1.006 ± 0.003) indicate a C-Cl bond cleavage as the rate-determining step, highlighting the difference with respect to the other studied degradation mechanisms. Changes in the microbial community diversity revealed that families such as Dojkabacteria, Anaerolineaceae, Dysgonomonadaceae, Bacteroidetes vadinHA17, Pseudomonadaceae, and Spirochaetaceae, may be potential agents of methoxychlor reductive dechlorination under anoxic conditions. This study advances the understanding of degradation mechanisms of methoxychlor and improves the ability to track its transformation in contaminated environments, including for the first time an isotopic perspective.

7.
Sci Total Environ ; 890: 164446, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37236441

RESUMO

Porphyry-style copper deposits are characterized by low Cu grades and high tonnages, resulting in large mine tailing volumes disposed in impoundments. Due to the mining tailing sizes, waterproofing techniques cannot be applied along the dam base. Therefore, to minimize seepage towards the aquifers, pumping wells are usually installed as hydraulic barriers. Currently, there is a controversy over whether or not the water extracted from hydraulic barriers should be counted as the use of new water rights. Consequently, a growing interest to develop tools to trace and quantify the tailing impacts in groundwater and to determine the water pumped amount subjected to water rights exist. In the present study, isotope data (δ2H-H2O, δ18O-H2O, δ34S-SO42- and δ18O-SO42-) are proposed as a tool to quantify tailings seepage towards groundwater and to assess hydraulic barriers effectiveness. To illustrate this approach usefulness, the Quillayes porphyry Cu tailing impoundment (Chile) case study is presented. The multi-isotopic approach revealed that tailing waters are highly evaporated showing high SO42- content (~1900 mg L-1) derived from primary sulfate ore dissolution, whereas freshwaters, derived from recharge water, have low SO42- contents (10-400 mg L-1) resulting from the interaction with geogenic sulfides from barren host rock. The δ2H and δ18O values of groundwater samples collected downstream from the impoundment suggest a mixing at different proportions of highly evaporated water from the mine tailing waters and non-evaporated regional fresh groundwater. Cl-/SO42-, δ34S-SO42-/δ18O-SO42-, δ34S-SO42-/ln(SO42-) and δ2H-H2O/δ18O-H2O mixing models allowed to determine that groundwater located closer to the impoundment had a mine tailing water contribution from 45 to 90 %, whereas those located farther away had lower contribution (5-25 %). Results confirmed the stable isotope usefulness to determine the water origin and to calculate the hydraulic barrier efficiencies and the pumped water proportions unrelated to the mining tailing subject to the water rights.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Cobre , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Isótopos/análise , Água
8.
Sci Total Environ ; 757: 143797, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33288271

RESUMO

This study presents a multi-disciplinary approach for the hydrogeological assessment and characterization of water resources in typical arid and semi-arid areas with high anthropogenic pressure, and where environmental conditions and political context prevent extensive field surveys. The use of a three-dimensional (3D) hydrogeological conceptual model, integrating hydrochemical and multi-isotope data, is proposed for the Batna and Biskra area (NE Algeria). Geological data were assembled in 3D geological software, from which a 3D hydrogeological conceptual model was constructed, which included the delineation of groundwater flow directions. The isotopic characterization, including deuterium and oxygen isotopic composition of water (δ2H and δ18O), and tritium (3H), provided information regarding recharge sources, flow pathways and residence times of groundwaters. Hydrochemical parameters, measured on the same samples, supported the interpretation of isotope data. All data were processed in a geographic information system (GIS) environment. The effectiveness of this approach was tested on a complex system of aquifers with high hydrogeological heterogeneity. Results show the important role the tectonic setting of an area can play in the hydrogeology and hydrochemistry of its principal groundwater systems. The fault network in the study region connects different aquifers, resulting in the mixing of groundwaters. The region most influenced by geological structures is the southern part of the study area, close to Biskra city. In fact, besides a limited contribution of recharge from rain and surface water derived from flood events, the recharge of the Cenozoic aquifers seems to proceed from the ascension of deeper Cretaceous groundwaters through the fault network, as indicated by temperature, bulk chemistry and in particular δ2H, δ18O and 3H results. In contrast, results suggest that the recharge of the low mineralized Maastrichtian waters is primarily influenced by local precipitation and runoff in the mountainous northern part of the study area. Tritium content, low salinity, and bulk chemistry all suggest such waters to be a mix of pre-bomb (deeper flow-lines within the aquifer) and recent water, with no contribution from the deepest Continental Intercalaire groundwaters. The proposed approach reduces ambiguity about the studied aquifer systems, greatly improves the conceptual understanding of their behaviour, and could provide insights into the vulnerability of the aquifers to different anthropogenic pollution phenomena. The methodology used appears to be a valid tool that could be applied to other geographical areas, to inform the design and implementation of efficient management strategies aimed at improving the quality and availability of water resources. Moreover, three-dimensional modelling methods are becoming increasingly applied to different aspects of groundwater management, to obtain a detailed picture of subsurface conditions.

9.
Water Res ; 188: 116537, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33126005

RESUMO

Nitrate (NO3-) pollution adversely impacts surface and groundwater quality. In recent decades, many countries have implemented measures to control and reduce anthropogenic nitrate pollution in water resources. However, to effectively implement mitigation measures at the origin of pollution,the source of nitrate must first be identified. The stable nitrogen and oxygen isotopes of NO3- (ẟ15N and ẟ18O) have been widely used to identify NO3- sources in water, and their combination with other stable isotopes such as boron (ẟ11B) has further improved nitrate source identification. However, the use of these datasets has been limited due to their overlapping isotopic ranges, mixing between sources, and/or isotopic fractionation related to physicochemical processes. To overcome these limitations, we combined a multi-isotopic analysis with fecal indicator bacteria (FIB) and microbial source tracking (MST) techniques to improve nitrate origin identification. We applied this novel approach on 149 groundwater and 39 surface water samples distributed across Catalonia (NE Spain). A further 18 wastewater treatment plant (WWTP) effluents were also isotopically and biologically characterized. The groundwater and surface water results confirm that isotopes and MST analyses were complementary and provided more reliable information on the source of nitrate contamination. The isotope and MST data agreed or partially agreed in most of the samples evaluated (79 %). This approach was especially useful for nitrate pollution tracing in surface water but was also effective in groundwater samples influenced by organic nitrate pollution. Furthermore, the findings from the WWTP effluents suggest that the use of literature values to define the isotopic ranges of anthropogenic sources can constrain interpretations. We therefore recommend that local sources be isotopically characterized for accurate interpretations. For instance, the detection of MST inferred animal influence in some WWTP effluents, but the ẟ11B values were higher than those reported in the literature for wastewater. The results of this study have been used by local water authorities to review uncertain cases and identify new vulnerable zones in Catalonia according to the European Nitrate Directive (91/676/CEE).


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Espanha , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 755(Pt 1): 142430, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33011595

RESUMO

Soil-applied biochar has been reported to possess the potential to mitigate nitrate leaching and thus, exert beneficial effects beyond carbon sequestration. The main objective of the present study is to confirm if a pine gasification biochar that has proven able to decrease soil-soluble nitrate in previous research can indeed exert such an effect and to determine by which mechanism. For this purpose, lysimeters containing soil-biochar mixtures at 0, 12 and 50 t biochar ha-1 were investigated in two different scenarios: a fresh biochar scenario consisting of fresh biochar and a fallow-managed soil, and an aged biochar scenario with a 6-yr naturally aged biochar in a crop-managed soil. Soil columns were assessed under a mimicked Mediterranean ambient within a greenhouse setting during an 8-mo period which included a barley crop cycle. A set of parameters related to nitrogen cycling, and particularly to mechanisms that could directly or indirectly explain nitrate content reduction (i.e., sorption, leaching, microbially-mediated processes, volatilisation, plant uptake, and ecotoxicological effects), were assessed. Specific measurements included soil solution and leachate ionic composition, microbial biomass and activity, greenhouse gas (GHG) emissions, N and O isotopic composition of nitrate, crop yield and quality, and ecotoxicological endpoints, among others. Nitrate content reduction in soil solution was verified for the fresh biochar scenario in both 12 and 50 t ha-1 treatments and was coupled to a significant reduction of chloride, sodium, calcium and magnesium. This effect was noticed only after eight months of biochar application thus suggesting a time-dependent process. All other mechanisms tested being discarded, the formation of an organo-mineral coating emerges as a plausible explanation for the ionic content decrease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA