Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542474

RESUMO

Diarylpentanoids are synthesized to overcome curcumin's poor bioavailability and low stability to show enhanced anti-cancer effects. Little is known about the anti-cancer effects of diarylpentanoid MS17 (1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one) in colon cancer cells. This study aimed to elucidate molecular mechanisms and pathways modulated by MS17 in colon cancer based on proteomic profiling of primary SW480 and metastatic SW620 colon cancer cells. Cytotoxicity and apoptotic effects of MS17 were investigated using MTT assay, morphological studies, and Simple Western analysis. Proteomic profiling using LC/MS analysis identified differentially expressed proteins (DEPs) in MS17-treated cells, with further analysis in protein classification, gene ontology enrichment, protein-protein interaction network and Reactome pathway analysis. MS17 had lower EC50 values (SW480: 4.10 µM; SW620: 2.50 µM) than curcumin (SW480: 17.50 µM; SW620: 13.10 µM) with a greater anti-proliferative effect. MS17 treatment of 1× EC50 induced apoptotic changes in the morphology of SW480 and SW620 cells upon 24 h treatment. A total of 24 and 92 DEPs (fold change ≥ 1.50) were identified in SW480 and SW620 cells, respectively, upon MS17 treatment of 2× EC50 for 24 h. Pathway analysis showed that MS17 may induce its anti-cancer effects in both cells via selected DEPs associated with the top enriched molecular pathways. RPL and RPS ribosomal proteins, heat shock proteins (HSPs) and ubiquitin-protein ligases (UBB and UBC) were significantly associated with cellular responses to stress in SW480 and SW620 cells. Our findings suggest that MS17 may facilitate the anti-proliferative and apoptotic activities in primary (SW480) and metastatic (SW620) human colon cancer cells via the cellular responses to stress pathway. Further investigation is essential to determine the alternative apoptotic mechanisms of MS17 that are independent of caspase-3 activity and Bcl-2 protein expression in these cells. MS17 could be a potential anti-cancer agent in primary and metastatic colon cancer cells.


Assuntos
Alcadienos , Neoplasias do Colo , Curcumina , Humanos , Curcumina/farmacologia , Proteômica , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo
2.
Int J Mol Sci ; 22(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299042

RESUMO

Diarylpentanoid (DAP), an analog that was structurally modified from a naturally occurring curcumin, has shown to enhance anticancer efficacy compared to its parent compound in various cancers. This study aims to determine the cytotoxicity, antiproliferative, and apoptotic activity of diarylpentanoid MS13 on two subtypes of non-small cell lung cancer (NSCLC) cells: squamous cell carcinoma (NCI-H520) and adenocarcinoma (NCI-H23). Gene expression analysis was performed using Nanostring PanCancer Pathways Panel to determine significant signaling pathways and targeted genes in these treated cells. Cytotoxicity screening revealed that MS13 exhibited greater inhibitory effect in NCI-H520 and NCI-H23 cells compared to curcumin. MS13 induced anti-proliferative activity in both cells in a dose- and time-dependent manner. Morphological analysis revealed that a significant number of MS13-treated cells exhibited apoptosis. A significant increase in caspase-3 activity and decrease in Bcl-2 protein concentration was noted in both MS13-treated cells in a time- and dose-dependent manner. A total of 77 and 47 differential expressed genes (DEGs) were regulated in MS13 treated-NCI-H520 and NCI-H23 cells, respectively. Among the DEGs, 22 were mutually expressed in both NCI-H520 and NCI-H23 cells in response to MS13 treatment. The top DEGs modulated by MS13 in NCI-H520-DUSP4, CDKN1A, GADD45G, NGFR, and EPHA2-and NCI-H23 cells-HGF, MET, COL5A2, MCM7, and GNG4-were highly associated with PI3K, cell cycle-apoptosis, and MAPK signaling pathways. In conclusion, MS13 may induce antiproliferation and apoptosis activity in squamous cell carcinoma and adenocarcinoma of NSCLC cells by modulating DEGs associated with PI3K-AKT, cell cycle-apoptosis, and MAPK pathways. Therefore, our present findings could provide an insight into the anticancer activity of MS13 and merits further investigation as a potential anticancer agent for NSCLC cancer therapy.


Assuntos
Alcadienos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Curcumina/análogos & derivados , Neoplasias Pulmonares/patologia , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Curcumina/química , Curcumina/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
3.
Pharmacol Res ; 156: 104792, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32278047

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating and rapidly progressing neurodegenerative disorder with no effective disease-modifying treatment up to date. The underlying molecular mechanisms of ALS are not yet completely understood. However, the critical role of the innate immune system and neuroinflammation in ALS pathogenesis has gained increased attention. High mobility group box 1 (HMGB1) is a typical damage-associated molecular pattern (DAMP) molecule, acting as a pro-inflammatory cytokine mainly through activation of its principal receptors, the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) which are crucial components of the innate immune system. HMGB1 is an endogenous ligand for both RAGE and TLR4 that mediate its biological effects. Herein, on the ground of pre-clinical findings we unravel the underlying mechanisms behind the plausible contribution of HMGB1 and its receptors (RAGE and TLR4) in the ALS pathogenesis. Furthermore, we provide an account of the therapeutic outcomes associated with inhibition/blocking of HMGB1 receptor signalling in preventing motor neuron's death and delaying disease progression in ALS experimental models. There is strong evidence that HMGB1, RAGE and TLR4 signaling axes might present potential targets against ALS, opening a novel headway in ALS research that could plausibly bridge the current treatment gap.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Proteína HMGB1/metabolismo , Neurônios Motores/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/imunologia , Encéfalo/patologia , Humanos , Imunidade Inata , Ligantes , Neurônios Motores/imunologia , Neurônios Motores/patologia , Transdução de Sinais , Medula Espinal/imunologia , Medula Espinal/patologia
4.
Pharmacol Res ; 152: 104593, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843673

RESUMO

Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and Lewy pathology. PD is a major concern of today's aging population and has emerged as a global health burden. Despite the rapid advances in PD research over the past decades, the gold standard therapy provides only symptomatic relief and fails to halt disease progression. Therefore, exploring novel disease-modifying therapeutic strategies is highly demanded. Metformin, which is currently used as a first-line therapy for type 2 diabetes mellitus (T2DM), has recently demonstrated to exert a neuroprotective role in several neurodegenerative disorders including PD, both in vitro and in vivo. In this review, we explore the neuroprotective potential of metformin based on emerging evidence from pre-clinical and clinical studies. Regarding the underlying molecular mechanisms, metformin has been shown to inhibit α-synuclein (SNCA) phosphorylation and aggregation, prevent mitochondrial dysfunction, attenuate oxidative stress, modulate autophagy mainly via AMP-activated protein kinase (AMPK) activation, as well as prevent neurodegeneration and neuroinflammation. Overall, the neuroprotective effects of metformin in PD pathogenesis present a novel promising therapeutic strategy that might overcome the limitations of current PD treatment.


Assuntos
Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Animais , Autofagia/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Encefalite/tratamento farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos
5.
Pharmacol Res ; 160: 105172, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32871246

RESUMO

Understanding the interplay between the innate immune system, neuroinflammation, and epilepsy might offer a novel perspective in the quest of exploring new treatment strategies. Due to the complex pathology underlying epileptogenesis, no disease-modifying treatment is currently available that might prevent epilepsy after a plausible epileptogenic insult despite the advances in pre-clinical and clinical research. Neuroinflammation underlies the etiopathogenesis of epilepsy and convulsive disorders with Toll-like receptor (TLR) signal transduction being highly involved. Among TLR family members, TLR4 is an innate immune system receptor and lipopolysaccharide (LPS) sensor that has been reported to contribute to epileptogenesis by regulating neuronal excitability. Herein, we discuss available evidence on the role of TLR4 and its endogenous ligands, the high mobility group box 1 (HMGB1) protein, the heat shock proteins (HSPs) and the myeloid related protein 8 (MRP8), in epileptogenesis and post-traumatic epilepsy (PTE). Moreover, we provide an account of the promising findings of TLR4 modulation/inhibition in experimental animal models with therapeutic impact on seizures.


Assuntos
Epilepsia/fisiopatologia , Imunidade Inata , Receptor 4 Toll-Like/efeitos dos fármacos , Animais , Epilepsia/patologia , Humanos , Inflamação/complicações , Inflamação/patologia , Ligantes
6.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610502

RESUMO

Brain injuries are devastating conditions, representing a global cause of mortality and morbidity, with no effective treatment to date. Increased evidence supports the role of neuroinflammation in driving several forms of brain injuries. High mobility group box 1 (HMGB1) protein is a pro-inflammatory-like cytokine with an initiator role in neuroinflammation that has been implicated in Traumatic brain injury (TBI) as well as in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Herein, we discuss the implication of HMGB1-induced neuroinflammatory responses in these brain injuries, mediated through binding to the receptor for advanced glycation end products (RAGE), toll-like receptor4 (TLR4) and other inflammatory mediators. Moreover, we provide evidence on the biomarker potential of HMGB1 and the significance of its nucleocytoplasmic translocation during brain injuries along with the promising neuroprotective effects observed upon HMGB1 inhibition/neutralization in TBI and EBI induced by SAH. Overall, this review addresses the current advances on neuroinflammation driven by HMGB1 in brain injuries indicating a future treatment opportunity that may overcome current therapeutic gaps.


Assuntos
Lesões Encefálicas/metabolismo , Proteína HMGB1/metabolismo , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Microglia/metabolismo , Neuroimunomodulação , Fármacos Neuroprotetores/farmacologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Receptor 4 Toll-Like/metabolismo
7.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260203

RESUMO

Epilepsy is a devastating neurological condition exhibited by repeated spontaneous and unpredictable seizures afflicting around 70 million people globally. The basic pathophysiology of epileptic seizures is still elusive, reflecting an extensive need for further research. Developing a novel animal model is crucial in understanding disease mechanisms as well as in assessing the therapeutic target. Most of the pre-clinical epilepsy research has been focused on rodents. Nevertheless, zebrafish disease models are relevant to human disease pathophysiology hence are gaining increased attention nowadays. The current study for the very first time developed a pilocarpine-induced chronic seizure-like condition in adult zebrafish and investigated the modulation in several neuroinflammatory genes and neurotransmitters after pilocarpine exposures. Seizure score analysis suggests that compared to a single dose, repeated dose pilocarpine produces chronic seizure-like effects maintaining an average seizure score of above 2 each day for a minimum of 10 days. Compared to the single dose pilocarpine treated group, there was increased mRNA expression of HMGB1, TLR4, TNF-α, IL-1, BDNF, CREB-1, and NPY; whereas decreased expression of NF-κB was upon the repeated dose of pilocarpine administration. In addition, the epileptic group demonstrates modulation in neurotransmitters levels such as GABA, Glutamate, and Acetylcholine. Moreover, proteomic profiling of the zebrafish brain from the normal and epileptic groups from LCMS/MS quantification detected 77 and 13 proteins in the normal and epileptic group respectively. Summing up, the current investigation depicted that chemically induced seizures in zebrafish demonstrated behavioral and molecular alterations similar to classical rodent seizure models suggesting the usability of adult zebrafish as a robust model to investigate epileptic seizures.


Assuntos
Redes Reguladoras de Genes/efeitos dos fármacos , Pilocarpina/efeitos adversos , Proteômica/métodos , Convulsões/genética , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , NF-kappa B/genética , Neurotransmissores/metabolismo , Pilocarpina/administração & dosagem , Convulsões/induzido quimicamente , Convulsões/metabolismo , Espectrometria de Massas em Tandem , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Molecules ; 25(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825505

RESUMO

The cytotoxic and apoptotic effects of turmeric (Curcuma longa) on colon cancer have been well documented but specific structural modifications of curcumin have been shown to possess greater growth-suppressive potential on colon cancer than curcumin. Therefore, the aim of this study is to identify the anti-cancer properties of curcumin analogue-MS13, a diarylpentanoid on the cytotoxicity, anti-proliferative and apoptotic activity of primary (SW480) and metastatic (SW620) human colon cancer cells. A cell viability assay showed that MS13 has greater cytotoxicity effect on SW480 (EC50: 7.5 ± 2.8 µM) and SW620 (EC50: 5.7 ± 2.4 µM) compared to curcumin (SW480, EC50: 30.6 ± 1.4 µM) and SW620, EC50: 26.8 ± 2.1 µM). Treatment with MS13 at two different doses 1X EC50 and 2X EC50 suppressed the colon cancer cells growth with lower cytotoxicity against normal cells. A greater anti-proliferative effect was also observed in MS13 treated colon cancer cells compared to curcumin at 48 and 72 h. Subsequent analysis on the induction of apoptosis showed that MS13 treated cells exhibited morphological features associated with apoptosis. The findings are also consistent with cellular apoptotic activities shown by increased caspase-3 activity and decreased Bcl-2 protein level in both colon cancer cell lines. In conclusion, MS13 able to suppress colon cancer cell growth by inhibiting cell proliferation and induce apoptosis in primary and metastatic human colon cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo , Curcumina , Citotoxinas , Caspase 3/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Curcumina/análogos & derivados , Curcumina/síntese química , Curcumina/química , Curcumina/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
J Neurochem ; 151(5): 542-557, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30644560

RESUMO

Epilepsy is a serious neurological condition exhibiting complex pathology and deserving of more serious attention. More than 30% of people with epilepsy are not responsive to more than 20 anti-epileptic drugs currently available, reflecting an unmet clinical need for novel therapeutic strategies. Not much is known about the pathogenesis of epilepsy, but evidence indicates that neuroinflammation might contribute to the onset and progression of epilepsy following acquired brain insults. However, the molecular mechanisms underlying these pathophysiological processes are yet to be fully understood. The emerging research suggests that high-mobility group box protein 1 (HMGB1), a DNA-binding protein that is both actively secreted by inflammatory cells and released by necrotic cells, might contribute to the pathogenesis of epilepsy. HMGB1 as an initiator and amplifier of neuroinflammation, and its activation is implicated in the propagation of seizures in animal models. The current review will highlight the potential role of HMGB1 in the pathogenesis of epilepsy, and implications of HMGB1-targeted therapies against epilepsy. HMGB1 in this context is an emerging concept deserving further exploration. Increased understanding of HMGB1 in seizures and epilepsy will pave the way in designing novel and innovative therapeutic strategies that could modify the disease course or prevent its development.


Assuntos
Epilepsia/metabolismo , Proteína HMGB1/metabolismo , Animais , Humanos
10.
Hemoglobin ; 43(3): 182-187, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31298599

RESUMO

This is the first report of quadrupole time-of-flight (Q-TOF) mass spectrometric identification of the hemoglobin (Hb) subunits, α, ß, δ and γ peptides, derived from enzymatic-digestion of proteins in the early unknown peaks of the cation exchange chromatography of Hb. The objectives were to identify the unknown high performance liquid chromatography (HPLC) peaks in healthy subjects and in patients with ß-thalassemia (ß-thal). The results demonstrate the existence of pools of free globin chains in red blood cells (RBCs). The α-, ß-, δ- and γ-globin peptides were identified in the unknown HPLC peaks. The quantification and role of the free globin pool in patients with ß-thal requires further investigation. Identification of all types of Hb subunits in the retention time (RT) before 1 min. suggests that altered Hbs is the nature of these fast-eluting peaks. Relevancy of thalassemias to the protein-aggregation disorders will require review of the role of free globin in the pathology of the disease.


Assuntos
Cromatografia Líquida de Alta Pressão , Subunidades de Hemoglobina/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Talassemia beta/sangue , Talassemia beta/diagnóstico , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Feminino , Subunidades de Hemoglobina/química , Hemoglobinas Anormais/análise , Hemoglobinas Anormais/química , Humanos , Masculino , Adulto Jovem , alfa-Globinas/análise , alfa-Globinas/química , Globinas beta/análise , Globinas beta/química , Globinas delta/análise , Globinas delta/química , gama-Globinas/análise , gama-Globinas/química
11.
Int J Mol Sci ; 20(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108984

RESUMO

Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.


Assuntos
Neoplasias Colorretais/genética , Curcumina/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
12.
Biopharm Drug Dispos ; 39(4): 205-217, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29488228

RESUMO

Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC50 values beyond 1000 µM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC50 value of 32.23 µM and Ki value of 30.80 µM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC50 of 6.08 µM and Ki of 1.16 µM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/Ki ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores do Citocromo P-450 CYP2C9/farmacologia , Citocromo P-450 CYP2C9/metabolismo , Antraquinonas/farmacologia , Artrite/tratamento farmacológico , Condroitina/farmacologia , Citocromo P-450 CYP2C9/química , Interações Medicamentosas , Glucosamina/farmacologia , Simulação de Acoplamento Molecular , Sulfafenazol/farmacologia , Valsartana/farmacologia
13.
Molecules ; 23(6)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890640

RESUMO

The aim of this study is to investigate the potential anti-cancer activity of l-amino acid oxidase (CP-LAAO) purified from the venom of Cryptelytrops purpureomaculatus on SW480 and SW620 human colon cancer cells. Mass spectrometry guided purification was able to identify and purify CP-LAAO. Amino acid variations identified from the partial protein sequence of CP-LAAO may suggest novel variants of these proteins. The activity of the purified CP-LAAO was confirmed with o-phenyldiamine (OPD)-based spectrophotometric assay. CP-LAAO demonstrated time- and dose-dependent cytotoxic activity and the EC50 value was determined at 13 µg/mL for both SW480 and SW620 cells. Significant increase of caspase-3 activity, reduction of Bcl-2 levels, as well as morphological changes consistent with apoptosis were demonstrated by CP-LAAO. Overall, these data provide evidence on the potential anti-cancer activity of CP-LAAO from the venom of Malaysian C. purpureomaculatus for therapeutic intervention of human colon cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Venenos de Crotalídeos/enzimologia , L-Aminoácido Oxidase/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/enzimologia , Humanos
14.
Indian J Microbiol ; 57(2): 177-187, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28611495

RESUMO

Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115T, Sinomonas humi MUSC 117T and Monashia flava MUSC 78T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115T and M. flava MUSC 78T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.

15.
Virol J ; 13(1): 194, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27894305

RESUMO

BACKGROUND: Hand, foot and mouth disease is caused by Enterovirus 71 (EV-A71) and Coxsackieviruses. EV-A71 infection is associated with high fever, rashes and ulcers but more severe symptoms such as cardiopulmonary failure and death have been reported. The lack of vaccines highlighted the urgency of developing preventive agents against EV-A71. The molecular determinants of virulent phenotypes of EV-A71 is unclear. It remains to be investigated if specific molecular determinants would affect the cell culture growth characteristics of the EV-A71 fatal strain in Rhabdomyosarcoma (RD) cells. RESULTS: In this study, several genetically modified sub-genotype B4 EV-A71 mutants were constructed by site-directed mutations at positions 158, 475, 486, 487 and 5262 or through partial deletion of the 5'-NTR region (∆ 11 bp from nt 475 to 486) to generate a deletion mutant (PD). EV-A71 mutants 475 and PD caused minimal cytopathic effects, produced lowest viral RNA copy number, viral particles as well as minimal amount of viral protein (VP1) in RD cells when compared to mutants 158, 486, 487 and 5262. CONCLUSIONS: The molecular determinants of virulent phenotypes of EV-A71 sub-genotype B4 strain 41 (5865/Sin/000009) were found to differ from the C158 molecular determinant reported for the fatal EV-A71 sub-genotype B1 strain (clinical isolate 237). The site-directed mutations (SDM) introduced at various sites of the cDNA affected growth of the various mutants when compared to the wild type. Lowest viral RNA copy number, minimal number of plaques formed, higher infectious doses required for 50% lethality of RD cells and much reduced VP1 of the EV-A71 sub-genotype B4 strain 41 genome was attained in mutants carrying SDM at position 475 and through partial deletion of 11 bp at the 5'-NTR region.


Assuntos
Enterovirus Humano A/crescimento & desenvolvimento , Enterovirus Humano A/genética , Fatores de Virulência/genética , Cultura de Vírus , Linhagem Celular Tumoral , Análise Mutacional de DNA , Humanos , Genética Reversa , Ensaio de Placa Viral
16.
Virol J ; 13: 5, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26738773

RESUMO

BACKGROUND: The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials. METHODS: This study thus investigated whether neural lineages derived from pluripotent human embryonic stem cells (hESC) can fulfil this purpose. EV71 infection of hESC-derived neural stem cells (NSC) and mature neurons (MN) was carried out in vitro, in comparison with RD and SH-SY5Y cell lines. RESULTS: Upon assessment of post-infection survivability and EV71 production by the various types, it was observed that NSC were significantly more susceptible to EV71 infection compared to MN, RD (rhabdomyosarcoma) and SH-SY5Y cells, which was consistent with previous studies on mice. The SP81 peptide had significantly greater inhibitory effect on EV71 production by NSC and MN compared to the cancer-derived RD and SH-SY5Y cell lines. CONCLUSIONS: Hence, this study demonstrates that hESC-derived neural lineages can be utilized as in vitro models for studying EV71 pathogenesis and for screening of antiviral therapeutics.


Assuntos
Linhagem da Célula , Enterovirus Humano A/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Neurônios/citologia , Neurônios/virologia , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Enterovirus Humano A/efeitos dos fármacos , Expressão Gênica , Humanos , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/farmacologia , Replicação Viral/efeitos dos fármacos
17.
Molecules ; 20(2): 3406-30, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25690296

RESUMO

Curcumin has poor in vivo absorption and bioavailability, highlighting a need for new curcumin analogues with better characteristics in these aspects. The aim of this study is to determine the anti-cancer properties of four selected curcumin analogues, on the cytotoxicity, proliferative and apoptotic effects on androgen-independent human prostate cancer cells (PC-3 and DU 145). Initial cytotoxicity screening showed MS17 has the highest cell inhibitory effect, with EC50 values of 4.4 ± 0.3 and 4.1 ± 0.8 µM, followed by MS13 (7.5 ± 0.1 and 7.4 ± 2.6 µM), MS49 (14.5 ± 1.2 and 12.3 ± 2.3 µM) and MS40E (28.0 ± 7.8 and 30.3 ± 1.9 µM) for PC-3 and DU 145 cells, respectively. Time-dependent analysis also revealed that MS13 and MS17 displayed a greater anti-proliferative effect than the other compounds. MS17 was chosen based on the high selectivity index value for further analysis on the morphological and biochemical hallmarks of apoptosis. Fluorescence microscopy analysis revealed apoptotic changes in both treated prostate cancer cells. Relative caspase-3 activity increased significantly at 48 h in PC-3 and 12 h in DU 145 cells. Highest enrichment of free nucleosomes was noted at 48 h after treatment with MS17. In conclusion, MS17 demonstrated anti-proliferative effect and induces apoptosis in a time and dose-dependent manner suggesting its potential for development as an anti-cancer agent for androgen-independent prostate cancer.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Curcumina , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Curcumina/análogos & derivados , Curcumina/síntese química , Curcumina/química , Curcumina/farmacologia , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
18.
Molecules ; 20(7): 11830-60, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26132907

RESUMO

In an effort to study curcumin analogues as an alternative to improve the therapeutic efficacy of curcumin, we screened the cytotoxic potential of four diarylpentanoids using the HeLa and CaSki cervical cancer cell lines. Determination of their EC50 values indicated relatively higher potency of 1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one (MS17, 1.03 ± 0.5 µM; 2.6 ± 0.9 µM) and 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13, 2.8 ± 0.4; 6.7 ± 2.4 µM) in CaSki and HeLa, respectively, with significantly greater growth inhibition at 48 and 72 h of treatment compared to the other analogues or curcumin. Based on cytotoxic and anti-proliferative activity, MS17 was selected for comprehensive apoptotic studies. At 24 h of treatment, fluorescence microscopy detected that MS17-exposed cells exhibited significant morphological changes consistent with apoptosis, corroborated by an increase in nucleosomal enrichment due to DNA fragmentation in HeLa and CaSki cells and activation of caspase-3 activity in CaSki cells. Quantitative real-time PCR also detected significant down-regulation of HPV18- and HPV16-associated E6 and E7 oncogene expression following treatment. The overall data suggests that MS17 treatment has cytotoxic, anti-proliferative and apoptosis-inducing potential in HPV-positive cervical cancer cells. Furthermore, its role in down-regulation of HPV-associated oncogenes responsible for cancer progression merits further investigation into its chemotherapeutic role for cervical cancer.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/análogos & derivados , Proteínas de Ligação a DNA/genética , Regulação para Baixo/efeitos dos fármacos , Proteínas Oncogênicas Virais/genética , Oncogenes , Proteínas E7 de Papillomavirus/genética , Proteínas Repressoras/genética , Neoplasias do Colo do Útero/virologia , Divisão Celular/efeitos dos fármacos , Curcumina/farmacologia , Feminino , Humanos , Microscopia de Fluorescência , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
19.
BMC Complement Altern Med ; 14: 391, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25308934

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the senile population with manifestation of motor disability and cognitive impairment. Reactive oxygen species (ROS) is implicated in the progression of oxidative stress-related apoptosis and cell death of the midbrain dopaminergic neurons. Its interplay with mitochondrial functionality constitutes an important aspect of neuronal survival in the perspective of PD. Edible bird's nest (EBN) is an animal-derived natural food product made of saliva secreted by swiftlets from the Aerodamus genus. It contains bioactive compounds which might confer neuroprotective effects to the neurons. Hence this study aims to investigate the neuroprotective effect of EBN extracts in the neurotoxin-induced in vitro PD model. METHODS: EBN was first prepared into pancreatin-digested crude extract and water extract. In vitro PD model was generated by exposing SH-SY5Y cells to neurotoxin 6-hydroxydopamine (6-OHDA). Cytotoxicity of the extracts on SH-SY5Y cells was tested using MTT assay. Then, microscopic morphological and nuclear examination, cell viability test and ROS assay were performed to assess the protective effect of EBN extracts against 6-OHDA-induced cellular injury. Apoptotic event was later analysed with Annexin V-propidium iodide flow cytometry. To understand whether the mechanism underlying the neuroprotective effect of EBN was mediated via mitochondrial or caspase-dependent pathway, mitochondrial membrane potential (MMP) measurement and caspase-3 quantification were carried out. RESULTS: Cytotoxicity results showed that crude EBN extract did not cause SH-SY5Y cell death at concentrations up to 75 µg/ml while the maximum non-toxic dose (MNTD) of water extract was double of that of crude extract. Morphological observation and nuclear staining suggested that EBN treatment reduced the level of 6-OHDA-induced apoptotic changes in SH-SY5Y cells. MTT study further confirmed that cell viability was better improved with crude EBN extract. However, water extract exhibited higher efficacy in ameliorating ROS build up, early apoptotic membrane phosphatidylserine externalization as well as inhibition of caspase-3 cleavage. None of the EBN treatment had any effect on MMP. CONCLUSIONS: Current findings suggest that EBN extracts might confer neuroprotective effect against 6-OHDA-induced degeneration of dopaminergic neurons, particularly through inhibition of apoptosis. Thus EBN may be a viable nutraceutical option to protect against oxidative stress-related neurodegenerative disorders such as PD.


Assuntos
Apoptose/efeitos dos fármacos , Aves/metabolismo , Doença de Parkinson/metabolismo , Animais , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Saliva/química , Saliva/metabolismo
20.
F1000Res ; 13: 225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919947

RESUMO

Epilepsy affects millions of people worldwide, and there is an urgent need to develop safe and effective therapeutic agents. Animal venoms contain diverse bioactive compounds like proteins, peptides, and small molecules, which may possess medicinal properties against epilepsy. In recent years, research has shown that venoms from various organisms such as spiders, ants, bees, wasps, and conus snails have anticonvulsant and antiepileptic effects by targeting specific receptors and ion channels. This review underscores the significance of purified proteins and toxins from these sources as potential therapeutic agents for epilepsy. In conclusion, this review emphasizes the valuable role of animal venoms as a natural resource for further exploration in epilepsy treatment research.


Assuntos
Anticonvulsivantes , Peçonhas , Animais , Anticonvulsivantes/farmacologia , Humanos , Peçonhas/uso terapêutico , Peçonhas/farmacologia , Peçonhas/química , Epilepsia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA