Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Molecules ; 26(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806579

RESUMO

This paper aimed to investigate the potential antifungal influences of new alkaloids from Delphinium peregrinum L. var. eriocarpum Boiss. New Diterpenoid alkaloids Delcarpum (1), Hydrodavisine (4) and known alkaloids Peregrine (2), Delphitisine (3) were isolated by different chromatographic methods from the aerial parts of D. Peregrinum eriocarpum Boiss, which grows in Syria. The structures of alkaloids were proposed based on 1D NMR spectroscopy 1H-NMR, 13C-NMR, DEPT-135, DEPT-90, 2D NMR spectroscopy DQF-COSY, HMQC, EI-Ms mass spectrum, and IR spectroscopic measurements. The antifungal activity of the isolated alkaloids was evaluated against different dermatophyte fungal isolates compared with fluconazole. In the case of Peregrine (2) the minimum inhibitory concentrations(MICs) recorded 128-256, 32-64, and 32 for Epidermophyton floccosum, Microsporum canis, and Trichophyton rubrum, respectively, compared to 32-64, 16, and 32 µg/mL in the case of fluconazole, respectively. The MICs recorded on application of the four alkaloids mixture were 64, 32, and 16 in the case of E. floccosum, M. canis, and T. rubrum, respectively, which were significantly lower than that measured for each of the individual alkaloid and were compatible for fluconazole. In conclusion, MICs of the tested alkaloids showed a variable potential effect on the investigated fungal isolates. Peregrine (2) was the most effective alkaloid, however, the application of the mixture of alkaloids induced significant synergistic activity that was more pronounced than the application of individual ones.


Assuntos
Alcaloides/farmacologia , Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Delphinium/química , Diterpenos/farmacologia , Epidermophyton/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alcaloides/isolamento & purificação , Antifúngicos/isolamento & purificação , Cromatografia , Diterpenos/isolamento & purificação , Estrutura Molecular , Extratos Vegetais/isolamento & purificação
2.
J Food Sci Technol ; 58(8): 3130-3142, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34294975

RESUMO

The sterols, hydrocarbons and fatty acids constituents of the leaves of five mango cultivars locally implanted in Egypt were identified. The effect of their essential oils (EOs) against food borne microorganisms was studied as preservative materials. The chemical constituents of the EOs isolated from mango leaves were identified by Gas Chromatography-Mass spectrometry (GC-MS) technique. Trans-caryophyllene, α-humulene and α-elemene were identified as terpene hydrocarbons, while 4-hydroxy-4-methyl-2-pentanone as oxygenated compounds were recorded in all tested cultivars with variable amounts. Results showed that Staphylococcus aureus and Escherichia coli were the most sensitive microorganisms tested for Alphonso EOs. On the other hand, Salmonella typhimrium was found to be less susceptible to the EOs of the studied cultivars. The EOs of different mango cultivars induced a steady decrease in the activity of amylase, protease and lipase at the minimum inhibitory concentration (MIC). The treatment of the tested bacteria with the EOs of mango cultivars caused a steady loss in enterotoxins even when applied at the sub-MIC. Bacteria-inoculated apple juice treated with minimum bactericidal concentration of Alphonso oil was free from the bacteria after 5 days of incubation at 25 °C. Eighteeen volatile compounds were found to reduce the activity of the amylase enzyme and the most active was cedrelanol (-7.6 kcal mol-1) followed by alpha-eudesmol (-7.3 kcal mol-1) and humulene oxide (-7 kcal mol-1). The binding mode of both of cedrelanol and alpha-eudesmol with amylase enzyme was illustrated.

3.
Clin Immunol ; 219: 108553, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32738296

RESUMO

Primary immunodeficiency diseases (PID), encompass a heterogeneous group of diseases, with increased susceptibility to recurrent, severe infections. Invasive fungal infections raise a serious concern related to their morbidity and mortality. Herein, we describe various fungal infections among different PID patients. Twenty-eight PID patients diagnosed with fungal infections were included; fourteen patients with chronic granulomatous disease, two with Hyper Immunoglobulin E syndrome, one with LRBA deficiency and one with MHC class II defect, one with unclassified immune dysregulation, one with CD4 lymphopenia and one patient with Immune dysregulation Polyendocrinopathy Enteropathy X-linked syndrome. Aspergillus species were the most common isolated causative organisms in 78% of patients, Candida species were the causative organisms in 32%, Pneumocystis jirovecii caused infections in 7% followed by Malassezia furfur, Fusarium spp., Mucormycosis, and Penicillium chrysogenium 3.5% for each. The mortality rate among our patients was 10/28 (35.7%). PID patients are at high risk of developing fungal infections.


Assuntos
Micoses/etiologia , Doenças da Imunodeficiência Primária/complicações , Bactérias/isolamento & purificação , Infecções Bacterianas/etiologia , Infecções Bacterianas/microbiologia , Criança , Pré-Escolar , Evolução Fatal , Feminino , Fungos/isolamento & purificação , Humanos , Lactente , Masculino , Micoses/microbiologia , Doenças da Imunodeficiência Primária/microbiologia
4.
Bioorg Med Chem ; 26(12): 3287-3295, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29729988

RESUMO

A series of fourteen novel synthesized arylazothiazole and arylhydrazothiazole derivatives were tested for their antifungal activity and structure-activity relationship. The activity of the compounds depends mainly on the side chains of the nucleus compound. The antifungal activity was more significant when both side chains are aromatic > one aromatic and one aliphatic and substituted aromatic with CH3 or OCH3 > non-substituted > substituted aromatic with chloro- or nitro-groups. Thiazole derivatives 7a, 7c, 7e, 7f, 7 g, 7i, 7 m, and 11a showed the most effective as antifungal compounds and were comparable with fluconazole as antifungal reference drug when investigated against Candida albicans, Microsporum gypseum and Trichophyton mentagrophytes. The minimum inhibitory concentration (MIC) reached 2 µg/mL in the case of C. albicans for compounds 7a, 7b, 7c and 11a and measured 4 µg/mL in the case of M. gypseum and T. mentagrophytes for the same compounds. The minimum fungicidal concentration (MFC) for the same compounds was 4 µg/mL for C. albicans and ranged from 8 to 32 µg/mL for the other two fungi. The results revealed that compounds 7c and 11a were the most antifungal compounds against the test fungi regarding keratinase activity and ergosterol biosynthesis. The in vivo efficacy of synthesized thiazoles 7c and 11a applied at their respective MFC was more effective in the treatment of skin infection of guinea pigs previously inoculated with the test fungi as compared with fluconazole. The Molecular Operating Environment (MOE) software was used to analyze the docking poses and binding energies of compound 11a and keratinase. The computational studies supported the biological activity results.


Assuntos
Antifúngicos/química , Tiazóis/química , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Sítios de Ligação , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Cobaias , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Microsporum/efeitos dos fármacos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Estrutura Terciária de Proteína , Dermatopatias/tratamento farmacológico , Dermatopatias/microbiologia , Dermatopatias/patologia , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Trichophyton/efeitos dos fármacos
5.
Environ Monit Assess ; 190(11): 685, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374933

RESUMO

Water quality and bacterial contamination from 18 drinking water municipal plants in three locations at Giza governorate were investigated. The average total count of bacteria detected after four stages of treatments in the investigated plants was 32 CFU/1 mL compared to 2330 cfu/mL for raw water, with a reduction percentage of 98.6. Although there is a relatively high removal percent of bacterial contamination from the water sources, however, several bacterial pathogens were identified in the produced water prepared for drinking including Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Shigella spp. After 3 days of water incubation at 30 °C, the amount of bacterial endotoxins ranged from 77 to 137 ng/mL in the water produced from the municipal plants compared to 621-1260 ng/mL for untreated water. The main diseases reported from patients attending different clinics and hospitals during summer 2014 at the surveyed locations and assuredly due to drinking water from these plants indicated that diarrheas and gastroenteritis due to E. coli and Campylobacter jejuni constituted 65.7% of the total patients followed by bacillary dysentery or shigellosis due to Shigella spp. (7.9%) and cholera due to Vibrio cholera (7.2%). There was an increase in serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) as well as urea and creatinine values of guinea pigs consuming water produced from the non-governmental plants for 6 months indicating remarkable liver and kidney damages. Histological sections of liver and kidney from the tested animal revealed liver having ballooning degeneration of hepatocytes and distortion and fragmentation of the nuclei, while the section of the kidney showed irregularly distributed wrinkled cells, degenerated Bowman's capsule, congested blood vessels, and inflammatory cells.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Água Potável/microbiologia , Monitoramento Ambiental/métodos , Gastroenterite/epidemiologia , Purificação da Água , Egito/epidemiologia , Humanos , Risco , Microbiologia da Água , Qualidade da Água
6.
Med Mycol ; 55(5): 495-506, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339548

RESUMO

The objective of this research was to investigate the effect of silver nanoparticles (AgNPs), free or conjugated with monoclonal antibody and mediated by Q-switched Nd:YAG laser on five dermatophytes. The laser was applied for 45 s at 532 nm and 0.8 J/cm2. The application of AgNPs combined with laser caused an increase in fungal susceptibility compared to application of AgNPs alone. The MIC50 and MIC100 recorded 3 and 9 µg/ml in the case of E. floccosum (the most susceptible species), 10 and 19 µg/ml for T. rubrum (the most tolerant species), respectively. A decrease in keratinase activity reaching 76.1, 67.1, and 62.4% was attained in the case of M. gypseum, T. rubrum, and T. mentagrophyte, respectively, on application of 10 µg/ml AgNPs combined with Nd:YAG laser. Under the same conditions of application, a steady increase in leaked materials coupled with reduction in ergosterol synthesis was reached. The structural alterations occurred to the fungus were more observed on the application of AgNPs in combination with laser where the conidia and hyphae lost their cellular integrity, become flaccid, permanently destructed, and completely killed. The monoclonal antibody conjugated AgNPs did not result in significant variation in in vitro experiments compared with that produced by nonconjugated nanoparticles. However, the conjugates achieved significantly more curing of M. canis-inoculated guinea pigs compared with nonconjugated nanoparticles.


Assuntos
Anti-Infecciosos/farmacologia , Anticorpos Antifúngicos/uso terapêutico , Arthrodermataceae/efeitos dos fármacos , Dermatomicoses/terapia , Lasers de Estado Sólido/uso terapêutico , Nanopartículas Metálicas , Prata/farmacologia , Animais , Anti-Infecciosos/uso terapêutico , Arthrodermataceae/metabolismo , Arthrodermataceae/efeitos da radiação , Arthrodermataceae/ultraestrutura , Linhagem Celular , Membrana Celular/ultraestrutura , Terapia Combinada , Modelos Animais de Doenças , Ergosterol/metabolismo , Cobaias , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Peptídeo Hidrolases/metabolismo , Prata/uso terapêutico , Resultado do Tratamento
7.
J Sci Food Agric ; 95(15): 3204-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25557283

RESUMO

BACKGROUND: Aspergillus niger has been reported as a potentially dangerous pathogen of date-palm fruits in Saudi Arabia due to the production of fumonisin B2 (FB2 ) and ochratoxin A (OTA). In a trial to disinfect this product, a double atmospheric pressure argon cold plasma (DAPACP) jet system was set up and evaluated against spore germination and mycotoxin production of the pathogen. RESULTS: The plasma jets were characterised photographically, electrically and spectroscopically. DAPACP jet length increases with the increase of argon flow rate, with optimum rate at 3.5 L min(-1) . The viability of A. niger spores, inoculated onto sterilised date palm fruit discs, progressively decreases with extension of the exposure time of DAPACP due to the more quantitative amount of OH and O radicals interacting with the examined samples. There was a progressive reduction of the amount of FB2 and OTA detected in date palm discs on extension of the exposure time of the plasma-treated inoculums at flow rate of 3.5 L min(-1) . FB2 was not detected in the discs inoculated with 6-min plasma-treated A. niger, while OTA was completely absent when the fungus was treated for 7.5 min. CONCLUSION: DAPACP showed promising results in dry fruit decontamination and in inhibition of mycotoxin release by A. niger contaminating the fruits. The progress in the commercial application of cold plasma needs further investigation concerning the ideal width of the plasma output to enable it to cover wider surfaces of the sample and consequently inducing greater plasma performance.


Assuntos
Aspergillus niger , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Frutas/microbiologia , Micotoxinas , Phoeniceae , Esporos Fúngicos , Argônio , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/metabolismo , Pressão Atmosférica , Temperatura Baixa , Contaminação de Alimentos , Fumonisinas , Humanos , Micotoxinas/metabolismo , Ocratoxinas , Gases em Plasma , Pressão , Arábia Saudita , Esporos Fúngicos/crescimento & desenvolvimento
8.
Sci Rep ; 12(1): 15812, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138052

RESUMO

Non-thermal atmospheric pressure plasmas are a powerful tool to impact seed germination and microbial decontamination. Air large volume atmospheric pressure glow discharge plasma was developed and investigated to improve the biological activities of Moringa oleifera seeds. Ninty ns magnetic pulse compression high voltage system was used to generate the plasma. The plasma discharges current increases with increasing applied voltage and it decreases with increasing discharge gap. There was a steady reduction in the count of seedborne fungi on the application of air cold plasma with complete elimination of fungi at ≥ 10.94 mJ per pulse. The low doses of plasma (2.46 and 4.35 mJ) induced an increase in the seed germination, a significant increase in chlorophyll content (chl a and chl b) and antioxidant activities of the seedlings emerged from soaked or wet seeds rather than dry seeds. At lower plasma doses (2.46 and 4.35 mJ) there was a significant increase in leaf area and chlorophyll content (chl a and chl b) of the seedlings that emerged from H2O2 soaked seeds rather than that of free from H2O2. The plasma was harmful when applied at higher doses (≥ 10.94 mJ) and more harmful to the wet seeds compared to the dry ones.


Assuntos
Desinfetantes , Moringa oleifera , Gases em Plasma , Antioxidantes/farmacologia , Clorofila/farmacologia , Desinfetantes/farmacologia , Germinação , Peróxido de Hidrogênio/farmacologia , Gases em Plasma/farmacologia , Plântula , Sementes
9.
Microorganisms ; 10(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35208801

RESUMO

Mycogenic silver nanoparticles (AgNPs) produced by some biocontrol agents have shown the ability to inhibit the growth of numerous plant pathogenic fungi, which may be a unique method of disease management. This study describes the extracellular production of AgNPs by Trichoderma harzianum. The size, shape, charge, and composition of the AgNPs were subsequently studied by UV-visible spectroscopy, DLS, zeta potential, TEM, SEM, and EDX, among other methods. The AgNPs had sizes ranging from 6 to 15 nm. The antifungal activities of bio-synthesized AgNPs and two commercial fungicides (Moncut and Maxim XL) were tested against three soil-borne diseases (Fusarium fujikuroi, Rhizoctonia solani, and Macrophomina phaseolina). Cotton seedling illnesses were significantly reduced under greenhouse settings after significant in vitro antifungal activity was documented for the control of plant pathogenic fungi. The use of biocontrol agents such as T. harzianum, for example, may be a safe strategy for synthesizing AgNPs and using them to combat fungus in Egyptian cotton.

10.
Environ Pollut ; 277: 116715, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33652183

RESUMO

Herbs and spices are food crops susceptible to contamination by toxigenic fungi. Ozone, as a decontamination approach in the industry, has attractive benefits over traditional food preservation practices. A contribution to the studying of ozone as an antifungal and anti-mycotoxigenic agent in herbs and spices storage processes is achieved in this research. Nine powdered sun-dried herbs and spices were analyzed for their fungal contamination. The results indicate that licorice root and peppermint leaves were found to have the highest population of fungi while black cumin and fennel record the lowest population. The most dominant fungal genera are Aspergillus, Penicillium, Fusarium, and Rhizopus. Ozone treatment was performed at a concentration of 3 ppm applied for exposure times of 0, 30, 90, 150, 210, and 280 min. After 280 min of exposure to ozone, the reduction of fungal count ranged from 96.39 to 98.26%. The maximum reduction in spore production was achieved in the case of A. humicola and Trichderma viride exposed for 210 min ozone gas. There was a remarkable reduction in the production of the total mycotoxin, reaching 24.15% in aflatoxins for the 150 min-treated inoculum in the case of A. flavus. The total volume of essential oil of chamomile and peppermint was reduced by 57.14 and 26.67%, respectively, when exposed to 3 ppm. For 280 min. In conclusion, fumigation with ozone gas can be used as a suitable method for achieving sanitation and decreasing microbial load in herbs and spices. Still, it is crucial to provide precautions on ozone's effect on major active constituents before recommending this method for industrial application.


Assuntos
Aflatoxinas , Micotoxinas , Ozônio , Aflatoxinas/análise , Contaminação de Alimentos/análise , Especiarias/análise
11.
J Fungi (Basel) ; 7(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34829239

RESUMO

ZnO-based nanomaterials have high antifungal effects, such as inhibition of growth and reproduction of some pathogenic fungi, such as Fusarium sp., Rhizoctonia solani and Macrophomina phaseolina. Therefore, we report the extracellular synthesis of ZnONPs using a potential fungal antagonist (Trichoderma harzianum). ZnONPs were then characterized for their size, shape, charge and composition by visual analysis, UV-visible spectrometry, X-ray diffraction (XRD), Zeta potential, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). The TEM test confirmed that the size of the produced ZnONPs was 8-23 nm. The green synthesized ZnONPs were characterized by Fourier transform infrared spectroscopy (FTIR) studies to reveal the functional group attributed to the formation of ZnONPs. For the first time, trichogenic ZnONPs were shown to have fungicidal action against three soil-cotton pathogenic fungi in the laboratory and greenhouse. An antifungal examination was used to evaluate the bioactivity of the mycogenic ZnONPs in addition to two chemical fungicides (Moncut and Maxim XL) against three soil-borne pathogens, including Fusarium sp., Rhizoctonia solani and Macrophomina phaseolina. The findings of this study show a novel fungicidal activity in in vitro assay for complete inhibition of fungal growth of tested plant pathogenic fungi, as well as a considerable reduction in cotton seedling disease symptoms under greenhouse conditions. The formulation of a trichogenic ZnONPs form was found to increase its antifungal effect significantly. Finally, the utilization of biocontrol agents, such as T. harzianum, could be a safe strategy for the synthesis of a medium-scale of ZnONPs and employ it for fungal disease control in cotton.

12.
Plants (Basel) ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34834647

RESUMO

Pathogenic infestations are significant threats to vegetable yield, and have become an urgent problem to be solved. Rhizoctonia solani is one of the worst fungi affecting tomato crops, reducing yield in some regions. It is a known fact that plants have their own defense against such infestations; however, it is unclear whether any exogenous material can help plants against infestation. Therefore, we performed greenhouse experiments to evaluate the impacts of R. solani on 15- and 30-day old tomato plants after fungal infestation, and estimated the antifungal activity of nanoparticles (NPs) against the pathogen. We observed severe pathogenic impacts on the above-ground tissues of tomato plants which would affect plant physiology and crop production. Pathogenic infection reduced total chlorophyll and anthocyanin contents, which subsequently disturbed plant physiology. Further, total phenolic contents (TPC), total flavonoid contents (TFC), and malondialdehyde (MDA) contents were significantly increased in pathogen treatments. Constitutively, enhanced activities were estimated for catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) in response to reactive oxygen species (ROS)in pathogen-treated plants. Moreover, pathogenesis-related genes, namely, chitinase, plant glutathione S-transferase (GST), phenylalanine ammonia-lyase (PAL1), pathogenesis-related protein (PR12), and pathogenesis-related protein (PR1) were evaluated, with significant differences between treated and control plants. In vitro and greenhouse antifungal activity of silver nanoparticles (Ag NPs), chitosan nanoparticles, and Ag NPs/CHI NPs composites and plant health was studied using transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectrophotometry. We found astonishing results, namely, that Ag and CHI have antifungal activities against R. solani. Overall, plant health was much improved following treatment with Ag NPs/CHI NPs composites. In order to manage R. solani pathogenicity and improve tomato health, Ag/CHI NPs composites could be used infield as well as on commercial levels based on recommendations. However, there is an urgent need to first evaluate whether these NP composites have any secondary impacts on human health or the environment.

13.
Sci Rep ; 10(1): 18024, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093503

RESUMO

Bacteria is recognized as opportunistic tumor inhabitant, giving rise to an environmental stress that may alter tumor microenvironment, which directs cancer behavior. In vitro infection of the T24 cell line with E. coli was performed to study the bacterial impact on bladder cancer cells. EMT markers were assessed using immunohistochemistry, western blot and RT-PCR. Stemness characteristics were monitored using RT-PCR. Furthermore, the metabolic reprograming was investigated by detection of ROS and metabolic markers. A significant (p ≤ 0.001) upregulation of vimentin as well as downregulation of CK19 transcription and protein levels was reported. A significant increase (p ≤ 0.001) in the expression level of stemness markers (CD44, NANOG, SOX2 and OCT4) was reported. ROS level was elevated, that led to a significant increase (p ≤ 0.001) in UCP2. This enhanced a significant increase (p ≤ 0.001) in PDK1 to significantly downregulate PDH (p ≤ 0.001) in order to block oxidative phosphorylation in favor of glycolysis. This resulted in a significant decrease (p ≤ 0.001) of AMPK, and a significant elevation (p ≤ 0.001) of MCT1 to export the produced lactate to extracellular matrix. Thus, bacteria may induce alteration to the heterogonous tumor cell population through EMT, CSCs and metabolic reprogramming, which may improve cancer cell ability to migrate and self-renew.


Assuntos
Reprogramação Celular , Infecções por Escherichia coli/complicações , Escherichia coli/patogenicidade , Células-Tronco Neoplásicas/patologia , Neoplasias da Bexiga Urinária/patologia , Apoptose , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Infecções por Escherichia coli/microbiologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/microbiologia , Células Tumorais Cultivadas , Microambiente Tumoral , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/microbiologia
14.
Sci Rep ; 10(1): 20863, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257724

RESUMO

A new series of 5-arylhydrazonothiazole derivatives 5a-d has been synthesized, elucidated, and evaluated for their antidermatophytic activity. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the newly synthesized products were investigated against 18 dermatophyte fungal isolates related to Epidermophyton floccosum, Microsporum canis, and Trichophyton rubrum. The morphological alterations induced by the synthesized derivatives singly or conjugated with the monoclonal antibody were examined on spores of T. rubrum using a scanning electron microscope. The efficacy of synthesized derivative 5a applied at its respective MFC alone or conjugated with anti-dermatophyte monoclonal antibody 0014 in skin infection treatment of guinea pigs due to inoculation with one of the examined dermatophytes, in comparison with fluconazole as standard reference drug was evaluated. In an in vivo experiment, the efficiency of 5a derivative conjugated with the antibody induced 100% healing after 45 days in the case of T. rubrum and M. canis-infected guinea pigs.


Assuntos
Anticorpos Monoclonais/farmacologia , Antifúngicos/farmacologia , Micoses/tratamento farmacológico , Dermatopatias Infecciosas/tratamento farmacológico , Animais , Arthrodermataceae/efeitos dos fármacos , Epidermophyton/efeitos dos fármacos , Fluconazol/farmacologia , Cobaias , Testes de Sensibilidade Microbiana , Microsporum/efeitos dos fármacos , Dermatopatias Infecciosas/microbiologia
15.
Braz J Microbiol ; 47(3): 697-702, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27287337

RESUMO

Dermatophytes are classified in three genera, Epidermophyton, Microsporum and Trichophyton. They have the capacity to invade keratinized tissue to produce a cutaneous infection known as dermatophytoses. This investigation was performed to study the effect of gaseous ozone and ozonized oil on three specific properties of six different dermatophytes. These properties included sporulation, mycelia leakage of sugar and nutrients and the activity of their hydrolytic enzymes. Generally, ozonized oil was found to be more efficacious than gaseous ozone. Microsporum gypseum and Microsporum canis were the most susceptible, while Trichophyton interdigitale and T. mentagrophytes were relatively resistant. The study revealed a steady decline in spore production of M. gypseum and M. canis on application of ozonated oil. An increase in leakage of electrolytes and sugar was noticed after treatment with ozonized oil in the case of M. gypseum, M. canis, T. interdigitale, T. mentagrophytes and T. rubrum. The results also revealed loss in urease, amylase, alkaline phosphatase, lipase and keratinase enzyme producing capacity of the investigated fungi.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Ozônio/farmacologia , Arthrodermataceae/fisiologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Eletrólitos/metabolismo , Ativação Enzimática , Proteínas Fúngicas/metabolismo , Humanos , Micélio , Permeabilidade , Esporos Fúngicos/efeitos dos fármacos
16.
J Med Microbiol ; 64(10): 1151-1161, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26296782

RESUMO

In an in vitro study with five clinical isolates of dermatophytes, the MIC(50) and MIC(100) values of silver nanoparticles (AgNPs) ranged from 5 to 16 and from 15 to 32 µg ml(- 1), respectively. The combined treatment of AgNPs with atmospheric pressure-air cold plasma (APACP) induced a drop in the MIC(50) and MIC100 values of AgNPs reaching 3-11 and 12-23 µg ml(- 1), respectively, according to the examined species. Epidermophyton floccosum was the most sensitive fungus to AgNPs, while Trichophyton rubrum was the most tolerant. AgNPs induced significant reduction in keratinase activity and an increase in the mycelium permeability that was greater when applied combined with plasma treatment. Scanning electron microscopy showed electroporation of the cell walls and the accumulation of AgNPs on the cell wall and inside the cells, particularly when AgNPs were combined with APACP treatment. An in vivo experiment with dermatophyte-inoculated guinea pigs indicated that the application of AgNPs combined with APACP was more efficacious in healing and suppressing disease symptoms of skin as compared with the application of AgNPs alone. The recovery from the infection reached 91.7 % in the case of Microsporum canis-inoculated guinea pigs treated with 13 µg ml(- 1) AgNPs combined with APACP treatment delivered for 2  min. The emission spectra indicated that the efficacy of APACP was mainly due to generation of NO radicals and excited nitrogen molecules. These reactive species interact and block the activity of the fungal spores in vitro and in the skin lesions of the guinea pigs. The results achieved are promising compared with fluconazole as reference antifungal drug.


Assuntos
Ar , Anti-Infecciosos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Dermatomicoses/tratamento farmacológico , Nanopartículas/microbiologia , Gases em Plasma , Prata/farmacologia , Animais , Arthrodermataceae/isolamento & purificação , Arthrodermataceae/ultraestrutura , Pressão Atmosférica , Parede Celular/ultraestrutura , Citoplasma/ultraestrutura , Dermatomicoses/microbiologia , Modelos Animais de Doenças , Cobaias , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Resultado do Tratamento
17.
Front Microbiol ; 6: 1098, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500637

RESUMO

The use of cold plasma jets for inactivation of a variety of microorganisms has recently been evaluated via culture-based methods. Accordingly, elucidation of the role of cold plasma in decontamination would be inaccurate because most microbial populations within a system remain unexplored owing to the high amount of yet uncultured bacteria. The impact of cold atmospheric plasma on the bacterial community structure of wastewater from two different industries was investigated by metagenomic-based polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) utilizing 16S rRNA genes. Three doses of atmospheric pressure dielectric barrier discharge plasma were applied to wastewater samples on different time scales. DGGE revealed that the bacterial community gradually changed and overall abundance decreased to extinction upon plasma treatment. The bacterial community in food processing wastewater contained 11 key operational taxonomic units that remained almost completely unchanged when exposed to plasma irradiation at 75.5 mA for 30 or 60 s. However, when exposure time was extended to 90 s, only Escherichia coli, Coliforms, Aeromonas sp., Vibrio sp., and Pseudomonas putida survived. Only E. coli, Aeromonas sp., Vibrio sp., and P. putida survived treatment at 81.94 mA for 90 s. Conversely, all bacterial groups were completely eliminated by treatment at 85.34 mA for either 60 or 90 s. Dominant bacterial groups in leather processing wastewater also changed greatly upon exposure to plasma at 75.5 mA for 30 or 60 s, with Enterobacter aerogenes, Klebsiella sp., Pseudomonas stutzeri, and Acidithiobacillus ferrooxidans being sensitive to and eliminated from the community. At 90 s of exposure, all groups were affected except for Pseudomonas sp. and Citrobacter freundii. The same trend was observed for treatment at 81.94 mA. The variability in bacterial community response to different plasma treatment protocols revealed that plasma had a selective impact on bacterial community structure at lower doses and potential bactericidal effects at higher doses.

18.
J Microbiol ; 52(1): 13-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24390833

RESUMO

Multicomponent phenol hydroxylases (mPHs) are diiron enzymes that use molecular oxygen to hydroxylate a variety of phenolic compounds. The DNA sequence of the alpha subunit (large subunit) of mPH from 4-chlorophenol (4-CP)-degrading bacterial strain PT3 was determined. Strain PT3 was isolated from oil-contaminated soil samples adjacent to automobile workshops and oil stations after enrichment and establishment of a chlorophenol-degrading consortium. Strain PT3 was identified as a member of Pseudomonas sp. based on sequence analysis of the 16S rRNA gene fragment. The 4-CP catabolic pathway by strain PT3 was tentatively proposed to proceed via a meta-cleavage pathway after hydroxylation to the corresponding chlorocatechol. This hypothesis was supported by polymerase chain reaction (PCR) detection of the LmPH encoding sequence and UV/VIS spectrophotometric analysis of the culture filtrate showing accumulation of 5-chloro-2-hydroxymuconic semialdehyde (5-CHMS) with λmax 380. The detection of catabolic genes involved in 4-CP degradation by PCR showed the presence of both mPH and catechol 2,3-dioxygenase (C23DO). Nucleotide sequence analysis of the alpha subunit of mPH from strain PT3 revealed specific phylogenetic grouping to known mPH. The metal coordination encoding regions from strain PT3 were found to be conserved with those from the homologous dinuclear oxo-iron bacterial monooxygenases. Two DE(D)XRH motifs was detected in LmPH of strain PT3 within an approximate 100 amino acid interval, a typical arrangement characteristic of most known PHs.


Assuntos
Clorofenóis/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Pseudomonas/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Filogenia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Ácido Sórbico/análogos & derivados , Espectrofotometria
19.
Saudi J Biol Sci ; 19(2): 185-93, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23961178

RESUMO

A survey was performed to isolate bacteria and fungi from cholesterol-rich sources including chicken liver, turkey giblets, salmon, lamb, egg yolk, beef brain and shrimps. A total of 34 bacterial and 22 fungal isolates were recovered from the tested sources. The highest count of isolates was recovered from the soil (12 isolates/g), followed by turkey giblets and egg yolk (8 isolates/g, for each). Out of 34 bacterial isolates, five induced the highest level in cholesterol degradation. The most potent bacterial isolate was recovered from turkey giblets and was identified as Streptomyces fradiae. In a trial to increase the cholesterol decomposing potentiality of S. fradiae, low intensity Nd-YAG laser irradiation was evaluated. The exposure of the chlorophyllin - photosensitized bacterium to 210 mW Nd-YAG laser for 8 min induced significant increase in cholesterol degrading activity reaching 73.8% as compared with 54.2% in the case of non-irradiated, non-photosensitized culture. Under the same conditions but using the reaction mixture containing cholesterol as a substrate and extracellular crude enzyme, the percent decomposition reached 53.7% for the irradiated culture as compared to 28.3% in the case of the control. Our data indicate the importance of the photosensitizer in enhancement of laser radiation to stimulate cholesterol decomposition of S. fradiae.

20.
Braz. j. microbiol ; 47(3): 697-702, July-Sept. 2016. tab
Artigo em Inglês | LILACS | ID: lil-788971

RESUMO

ABSTRACT Dermatophytes are classified in three genera, Epidermophyton, Microsporum and Trichophyton. They have the capacity to invade keratinized tissue to produce a cutaneous infection known as dermatophytoses. This investigation was performed to study the effect of gaseous ozone and ozonized oil on three specific properties of six different dermatophytes. These properties included sporulation, mycelia leakage of sugar and nutrients and the activity of their hydrolytic enzymes. Generally, ozonized oil was found to be more efficacious than gaseous ozone. Microsporum gypseum and Microsporum canis were the most susceptible, while Trichophyton interdigitale and T. mentagrophytes were relatively resistant. The study revealed a steady decline in spore production of M. gypseum and M. canis on application of ozonated oil. An increase in leakage of electrolytes and sugar was noticed after treatment with ozonized oil in the case of M. gypseum, M. canis, T. interdigitale, T. mentagrophytes and T. rubrum. The results also revealed loss in urease, amylase, alkaline phosphatase, lipase and keratinase enzyme producing capacity of the investigated fungi.


Assuntos
Humanos , Ozônio/farmacologia , Arthrodermataceae/efeitos dos fármacos , Antifúngicos/farmacologia , Permeabilidade , Esporos Fúngicos/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Micélio , Arthrodermataceae/fisiologia , Eletrólitos/metabolismo , Ativação Enzimática , Metabolismo dos Carboidratos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA