Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(4): e2303115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726245

RESUMO

Phosphorene is a 2D phosphorus atomic layer arranged in a honeycomb lattice like graphene but with a buckled structure. Since its exfoliation from black phosphorus in 2014, phosphorene has attracted tremendous research interest both in terms of synthesis and fundamental research, as well as in potential applications. Recently, significant attention in phosphorene is motivated not only by research on its fundamental physical properties as a novel 2D semiconductor material, such as tunable bandgap, strong in-plane anisotropy, and high carrier mobility, but also by the study of its wide range of potential applications, such as electronic, optoelectronic, and spintronic devices, energy conversion and storage devices. However, a lot of avenues remain to be explored including the fundamental properties of phosphorene and its device applications. This review recalls the current state of the art of phosphorene and its derivatives, touching upon topics on structure, synthesis, characterization, properties, stability, and applications. The current needs and future opportunities for phosphorene are also discussed.

2.
Nanotechnology ; 34(23)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36848665

RESUMO

Atomically thin bismuth films (2D Bi) are becoming a promising research area due to their unique properties and their wide variety of applications in spintronics, electronic and optoelectronic devices. We report on the structural properties of Bi on Au(110), explored by low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. At a Bi coverage lower than one monolayer (1 ML) various reconstructions are observed, we focus on Bi/Au(110)-c(2 × 2) reconstruction (at 0.5 ML) and Bi/Au(110)-(3 × 3) structure (at 0.66 ML). We propose models for both structures based on STM measurements and further confirm by DFT calculations.

3.
Nanotechnology ; 33(9)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34814126

RESUMO

This work reports on the electron-induced modification of NaCl thin film grown on Ag(110). We show using low energy electron diffraction that electron beam bombardment leads to desorption and formation of Cl vacancy defects on NaCl surface. The topographic structure of these defects is studied using scanning tunneling microscopy (STM) showing the Cl defects as depressions on the NaCl surface. Most of the observed defects are mono-atomic vacancies and are located on flat NaCl terraces. Auger electron spectroscopy confirms the effect of electron exposure on NaCl thin films showing Cl atoms desorption from the surface. Using density functional theory taken into account the van der Waals dispersion interactions, we confirm the observed experimental STM measurements with STM simulation. Furthermore, comparing the adsorption of defect free NaCl and defective NaCl monolayer on Ag(110) surfaces, we found an increase of the adhesion energy and the charge transfer between the NaCl film and the substrate due to the Cl vacancy. In details, the adhesion energy increases between the NaCl film and the metallic Ag substrate from 30.4 meV Å-2for the NaCl film without Cl vacancy and from 39.5 meV Å-2for NaCl film with a single Cl vacancy. The charge transfer from the NaCl film to the Ag substrate is enhanced when the vacancy is created, from 0.63e-to 1.25e-.

4.
Nanotechnology ; 31(49): 495602, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32975225

RESUMO

The synthesis of blue phosphorene by molecular beam epitaxy (MBE) has recently come under the spotlight due to its potential applications in electronic and optoelectronic devices. However, this synthesis remains a significant challenge. The surface reactivity between the P atoms and the Au atoms should be considered for the P/Au(111) system. In the MBE process, the temperature of the substrate is a key parameter for the growth of blue phosphorene. During the initial growth stage, irregularly shaped Phosphorus clusters grow on top of Au(111) surface at room temperature. When the substrate temperature is increased, these clusters transform into a phosphorene-like structure with a honeycomb lattice. An atom exchange reaction is observed between the P and first layer Au atoms under thermal activation at higher temperature, where the P atoms replace Au atoms to form a blue phosphorene structure within the top Au layer and at the step edges.

5.
Phys Chem Chem Phys ; 21(32): 17811-17820, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31372603

RESUMO

Silicon nanoribbons - one dimensional silicon structures with a pentagonal atomic structure and mixed sp2- and sp3-hybridisation - grow on Ag(110) upon deposition of silicon. These nanostructures are viewed as promising candidates for modern day electronics as they are comprised of the same element as today's semiconductor devices. Even though they have been studied extensively over the last decade, only little is known about their unoccupied band structure which is important for possible future optoelectronics, semiconductor, and spintronics applications. In order to elucidate the unoccupied band structure of the nanoribbons, k-resolved inverse photoemission spectroscopy (KRIPES) studies were performed on both nanoribbon structures reported in the literature as well as on the bare Ag(110) substrate within the energy range of E-EF = 0-6.5 eV. The obtained experimental results are compared to density functional theory (DFT) calculated band structures to assign individual spectral features to specific bands. Since even small changes in the structural model of the nanoribbons lead to a change in the calculated band structure, this comparison allows us to assess the validity of the proposed structural models.

6.
Small ; 14(51): e1804066, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30370995

RESUMO

Phosphorene is a new 2D material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct bandgap and high carrier mobility values, which make it suitable for a large variety of optical and electronic devices. However, the synthesis of single-layer phosphorene is a major challenge. The standard procedure to obtain phosphorene is by exfoliation. More recently, the epitaxial growth of single-layer phosphorene on Au(111) was investigated by molecular beam epitaxy and the obtained structure described as a blue phosphorene sheet. In the present study, large areas of high-quality monolayer phosphorene, with a bandgap value equal to at least 0.8 eV, are synthesized on Au(111). The experimental investigations, coupled with density functional theory calculations, give evidence of two distinct phases of blue phosphorene on Au(111), instead of one as previously reported, and their atomic structures are determined.

7.
Nat Commun ; 12(1): 5160, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453043

RESUMO

The emergence of peculiar phenomena in 1D phosphorene chains (P chains) has been proposed in theoretical studies, notably the Stark and Seebeck effects, room temperature magnetism, and topological phase transitions. Attempts so far to fabricate P chains, using the top-down approach starting from a few layers of bulk black phosphorus, have failed to produce reliably precise control of P chains. We show that molecular beam epitaxy gives a controllable bottom-up approach to grow atomically thin, crystalline 1D flat P chains on a Ag(111) substrate. Scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and density functional theory calculations reveal that the armchair-shaped chains are semiconducting with an intrinsic 1.80 ± 0.20 eV band gap. This could make these P chains an ideal material for opto-electronic devices.

8.
RSC Adv ; 10(51): 30934-30943, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516062

RESUMO

This work relates to direct synthesis of the two-dimensional (2D) transition metal dichalchogenide (TMD) PtSe2 using an original method based on chemical deposition during immersion of a Pt(111) surface into aqueous Na2Se solution. Annealing of the sample induces significant modifications in the structural and electronic properties of the resulting PtSe2 film. We report systematic investigations of temperature dependent phase transitions by combining synchrotron based high-resolution X-ray photoemission (XPS), low temperature scanning tunnelling microscopy (LT-STM) and low energy electron diffraction (LEED). From the STM images, a phase transition from TMD 2H-PtSe2 to Pt2Se alloy monolayer structure is observed, in agreement with the LEED patterns showing a transition from (4 × 4) to (√3 × âˆš3)R30° and then to a (2 × 2) superstructure. This progressive evolution of the surface reconstruction has been monitored by XPS through systematic de-convolution of the Pt4f and Se3d core level peaks at different temperatures. The present work provides an alternative method for the large scale fabrication of 2D transition metal dichalchogenide films.

9.
Nanoscale Adv ; 2(6): 2309-2314, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133383

RESUMO

We report on the oxidation of self-assembled silicene nanoribbons grown on the Ag (110) surface using scanning tunneling microscopy and high-resolution photoemission spectroscopy. The results show that silicene nanoribbons present a strong resistance towards oxidation using molecular oxygen. This can be overcome by increasing the electric field in the STM tunnel junction above a threshold of +2.6 V to induce oxygen dissociation and reaction. The higher reactivity of the silicene nanoribbons towards atomic oxygen is observed as expected. The HR-PES confirm these observations: even at high exposures of molecular oxygen, the Si 2p core-level peaks corresponding to pristine silicene remain dominant, reflecting a very low reactivity to molecular oxygen. Complete oxidation is obtained following exposure to high doses of atomic oxygen; the Si 2p core level peak corresponding to pristine silicene disappears.

10.
R Soc Open Sci ; 7(10): 201210, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204477

RESUMO

Phosphorene is a new two-dimensional material that has recently attracted much attention owing to its fascinating electrical, optical, thermal and chemical properties. Here, we report on high-quality exfoliation of black phosphorus nanosheets, with controllable size produced in large quantities by liquid-phase exfoliation using N-methyl-2-pyrrolidone (NMP) as a solvent under ambient conditions. The as-synthesized few layers show a great potential for solar energy conversion based on the optical results shown in this work.

11.
Sci Rep ; 7: 44400, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281666

RESUMO

The remarkable properties of graphene stem from its two-dimensional (2D) structure, with a linear dispersion of the electronic states at the corners of the Brillouin zone (BZ) forming a Dirac cone. Since then, other 2D materials have been suggested based on boron, silicon, germanium, phosphorus, tin, and metal di-chalcogenides. Here, we present an experimental investigation of a single silicon layer on Au(111) using low energy electron diffraction (LEED), high resolution angle-resolved photoemission spectroscopy (HR-ARPES), and scanning tunneling microscopy (STM). The HR-ARPES data show compelling evidence that the silicon based 2D overlayer is responsible for the observed linear dispersed feature in the valence band, with a Fermi velocity of comparable to that of graphene. The STM images show extended and homogeneous domains, offering a viable route to the fabrication of silicene-based opto-electronic devices.

12.
J Phys Condens Matter ; 25(44): 442001, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24131870

RESUMO

In this paper, we report the direct chemical synthesis of silicon sheets in gram-scale quantities by chemical exfoliation of pre-processed calcium disilicide (CaSi2). We have used a combination of x-ray photoelectron spectroscopy, transmission electron microscopy and energy-dispersive x-ray spectroscopy to characterize the obtained silicon sheets. We found that the clean and crystalline silicon sheets show a two-dimensional hexagonal graphitic structure.

13.
J Phys Condens Matter ; 24(31): 314211, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22820837

RESUMO

In this paper we report on several structures of silicene, the analog of graphene for silicon, on the silver surfaces Ag(100), Ag(110) and Ag(111). Deposition of Si produces honeycomb structures on these surfaces. In particular, we present an extensive theoretical study of silicene on Ag(111) for which several recent experimental studies have been published. Different silicene structures were obtained only by varying the silicon coverage and/or its atomic arrangement. All the structures studied show that silicene is buckled, with a Si-Si nearest neighbor distance varying between 2.28 and 2.5 Å. Due to the buckling in the silicene sheet, the apparent (lateral) Si-Si distance can be as low as 1.89 Å. We also found that for a given coverage and symmetry, one may observe different scanning tunneling microscopy images corresponding to structures that differ by only a translation.

14.
J Phys Condens Matter ; 22(4): 045004, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21386306

RESUMO

We report results of a computational investigation, based on density functional theory, of silicon self-assembled nano-ribbons (Si NRs) on Ag(110). These NRs present a honeycomb-like structure arched on the substrate and forming a closed-packed structure. The calculated STM images match the experimental ones, hinting to a possible new Si structure, mediated by the Ag substrate. The observed new electronic states near the Fermi level were reproduced by the calculations and attributed to a confinement/hybridization tandem.

15.
Nano Lett ; 8(8): 2299-304, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18624391

RESUMO

Silicon oxide nanowires hold great promise for functional nanoscale electronics. Here, we investigate the oxidation of straight, massively parallel, metallic Si nanowires. We show that the oxidation process starts at the Si NW terminations and develops like a burning match. While the spectroscopic signatures on the virgin, metallic part, are unaltered we identify four new oxidation states on the oxidized part, which show a gap opening, thus revealing the formation of a transverse internal nanojunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA