Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pain ; 14: 1744806918778491, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29783906

RESUMO

Background Oral administration of Bulleyaconitine A, an extracted diterpenoid alkaloid from Aconitum bulleyanum plants, is effective for treating chronic pain in rats and in human patients, but the underlying mechanisms are poorly understood. Results As the hyperexcitability of dorsal root ganglion neurons resulting from the upregulation of voltage-gated sodium (Nav) channels has been proved critical for development of chronic pain, we tested the effects of Bulleyaconitine A on Nav channels in rat spared nerve injury model of neuropathic pain. We found that Bulleyaconitine A at 5 nM increased the threshold of action potentials and reduced the firing rate of dorsal root ganglion neurons in spared nerve injury rats but not in sham rats. Bulleyaconitine A preferably blocked tetrodotoxin-sensitive Nav channels over tetrodotoxin-resistant ones in dorsal root ganglion neurons of spared nerve injury rats. Bulleyaconitine A was more potent for blocking Nav1.3 and Nav1.7 than Nav1.8 in cell lines. The half maximal inhibitory concentration (IC50) values for resting Nav1.3, Nav1.7, and Nav1.8 were 995.6 ± 139.1 nM, 125.7 ± 18.6 nM, and 151.2 ± 15.4 µM, respectively, which were much higher than those for inactivated Nav1.3 (20.3 ± 3.4 pM), Nav1.7 (132.9 ± 25.5 pM), and Nav1.8 (18.0 ± 2.5 µM). The most profound use-dependent blocking effect of Bulleyaconitine A was observed on Nav1.7, less on Nav1.3, and least on Nav1.8 at IC50 concentrations. Bulleyaconitine A facilitated the inactivation of Nav channels in each subtype. Conclusions Preferably blocking tetrodotoxin-sensitive Nav1.7 and Nav1.3 in dorsal root ganglion neurons may contribute to Bulleyaconitine A's antineuropathic pain effect.


Assuntos
Aconitina/análogos & derivados , Gânglios Espinais/patologia , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Tecido Nervoso/lesões , Neurônios/metabolismo , Aconitina/farmacologia , Animais , Linhagem Celular , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/metabolismo , Tecido Nervoso/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos Sprague-Dawley
2.
Anesthesiology ; 126(6): 1151-1168, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28306698

RESUMO

BACKGROUND: Antineoplastic agents, including vincristine, often induce neuropathic pain and magnesium deficiency clinically, but the causal link between them has not been determined. No drug is available for treating this form of neuropathic pain. METHODS: Injection of vincristine (0.1 mg · kg · day, intraperitoneally, for 10 days) was used to induce nociceptive sensitization, which was accessed with von Frey hairs and the plantar tester in adult male Sprague-Dawley rats. Magnesium-L- threonate was administered through drinking water (604 mg · kg · day). Extracellular and intracellular free Mg were measured by Calmagite chromometry and flow cytometry. Molecular biologic and electrophysiologic experiments were performed to expose the underlying mechanisms. RESULTS: Vincristine injection induced allodynia and hyperalgesia (n = 12), activated tumor necrosis factor-α/nuclear factor-κB signaling, and reduced free Mg in cerebrospinal fluid by 21.7 ± 6.3% (mean ± SD; n = 13) and in dorsal root ganglion neurons by 27 ± 6% (n = 11). Reducing Mg activated tumor necrosis factor-α/nuclear factor-κB signaling in cultured dorsal root ganglion neurons. Oral application of magnesium-L-threonate prevented magnesium deficiency and attenuated both activation of tumor necrosis factor-α/nuclear factor-κB signaling and nociceptive sensitization (n = 12). Mechanistically, vincristine induced long-term potentiation at C-fiber synapses, up-regulated N-methyl-D-aspartate receptor type 2B subunit of N-methyl-D-aspartate receptor, and led to peptidergic C-fiber sprouting in spinal dorsal horn (n = 6 each). The vincristine-induced pathologic plasticity was blocked by intrathecal injection of nuclear factor-κB inhibitor (n = 6), mimicked by tumor necrosis factor-α, and substantially prevented by oral magnesium-L-threonate (n = 5). CONCLUSIONS: Vincristine may activate tumor necrosis factor-α/nuclear factor-κB pathway by reduction of intracellular magnesium, leading to spinal pathologic plasticity and nociceptive sensitization. Oral magnesium-L-threonate that prevents the magnesium deficiency is a novel approach to prevent neuropathic pain induced by chemotherapy.


Assuntos
Butiratos/farmacologia , Hiperalgesia/tratamento farmacológico , NF-kappa B/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Vincristina/efeitos adversos , Administração Oral , Animais , Antineoplásicos Fitogênicos , Butiratos/administração & dosagem , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Masculino , Ratos , Ratos Sprague-Dawley
4.
Exp Neurol ; 302: 104-111, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339053

RESUMO

Painful neuropathy, as a severe side effect of chemotherapeutic bortezomib, is the most common reason for treatment discontinuation. However, the mechanism by which administration of bortezomib leads to painful neuropathy remains unclear. In the present study, we found that application of bortezomib significantly increased the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) and phosphorylated signal transducer and activator of transcription-3 (STAT3) in dorsal root ganglion (DRG). Intrathecal injection of NLRP3 siRNA significantly prevented the mechanical allodynia induced by bortezomib treatment, and intrathecal injection of recombinant adeno-associated virus vector encoding NLRP3 markedly decreased paw withdrawal threshold of naive rats. Furthermore, the expressions of p-STAT3 were colocalized with NLRP3-positive cells in DRG neurons, and inhibition of STAT3 by intrathecal injection of AAV-Cre-GFP into STAT3flox/flox mice or inhibitor S3I-201 suppressed the upregulation of NLRP3 and mechanical allodynia induced by bortezomib treatment. Chromatin immunoprecipitation further found that bortezomib increased the recruitment of STAT3, as well as the acetylation of histone H3 and H4, in the NLRP3 promoter region in DRG neurons. Importantly, inhibition of the STAT3 activity by using S3I-201 or DRG local deficiency of STAT3 also significantly prevented the upregulated H3 and H4 acetylation in the NLRP3 promoter region following bortezomib treatment. Altogether, our results suggest that the upregulation of NLRP3 in DRG via STAT3-dependent histone acetylation is critically involved in bortezomib-induced mechanical allodynia.


Assuntos
Antineoplásicos/toxicidade , Bortezomib/toxicidade , Histonas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dor/induzido quimicamente , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Fator de Transcrição STAT3/metabolismo , Regulação para Cima/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Ácidos Aminossalicílicos/farmacologia , Animais , Benzenossulfonatos/farmacologia , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dor/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Transfecção
5.
Exp Neurol ; 296: 74-82, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28729113

RESUMO

Bortezomib is a first-line chemotherapeutic drug widely used for multiple myeloma and other nonsolid malignancies. Although bortezomib-induced persistent pain is easily diagnosed in clinic, the pathogenic mechanism remains unclear. Here, we studied this issue with use of a rat model of systemic intraperitoneal administration of bortezomib for consecutive 5days. Consisted with our previous study, we found that bortezomib treatment markedly induced mechanical allodynia in rats. Furthermore, we first found that bortezomib treatment significantly induced the upregulation of methylglyoxal in spinal dorsal horn of rats. Spinal local application of methylglyoxal also induced mechanical allodynia and central sensitization in normal rats. Moreover, administration of bortezomib upregulated the expression of receptors for advanced glycation end products (RAGE) and phosphorylated STAT3 (p-STAT3) in dorsal horn. Importantly, intrathecal injection of metformin, a known scavenger of methylglyoxal, significantly attenuated the upregulation of methylglyoxal and RAGE in dorsal horn, central sensitization and mechanical allodynia induced by bortezomib treatment, and blockage of RAGE also prevented the upregulation of p-STAT3, central sensitization and mechanical allodynia induced by bortezomib treatment. In addition, inhibition of STAT3 activity by S3I-201 attenuated bortezomib-induced mechanical allodynia and central sensitization. Local knockdown of STAT3 also ameliorated the mechanical allodynia induced by bortezomib administration. Our results suggest that accumulation of methylglyoxal may activate the RAGE/STAT3 signaling pathway in dorsal horn, and contributes to the spinal central sensitization and persistent pain induced by bortezomib treatment.


Assuntos
Bortezomib/toxicidade , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/uso terapêutico , Medula Espinal/fisiopatologia , Animais , Antineoplásicos/toxicidade , Modelos Animais de Doenças , Masculino , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/fisiologia , Dor/patologia , Medição da Dor/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Transdução Genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA