Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Am Chem Soc ; 139(43): 15371-15376, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981260

RESUMO

We present the first copper iridium binary metal oxide with the chemical formula Cu2IrO3. The material is synthesized from the parent compound Na2IrO3 by a topotactic reaction where sodium is exchanged with copper under mild conditions. Cu2IrO3 has the same monoclinic space group (C2/c) as Na2IrO3 with a layered honeycomb structure. The parent compound Na2IrO3 is proposed to be relevant to the Kitaev spin liquid on the basis of having Ir4+ with an effective spin of 1/2 on a honeycomb lattice. Remarkably, whereas Na2IrO3 shows a long-range magnetic order at 15 K and fails to become a true spin liquid, Cu2IrO3 remains disordered until 2.7 K, at which point a short-range order develops. Rietveld analysis shows less distortions in the honeycomb structure of Cu2IrO3 with bond angles closer to 120° compared to Na2IrO3. Thus, the weak short-range magnetism combined with the nearly ideal honeycomb structure places Cu2IrO3 closer to a Kitaev spin liquid than its predecessors.

3.
Sci Rep ; 12(1): 13294, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918369

RESUMO

Inline holography in the transmission electron microscope is a versatile technique which provides real-space phase information that can be used for the correction of imaging aberrations, as well as for measuring electric and magnetic fields and strain distributions. It is able to recover high-spatial-frequency contributions of the phase effectively but suffers from the weak transfer of low-spatial-frequency information, as well as from incoherent scattering. Here, we combine gradient flipping and phase prediction in an iterative flux-preserving focal series reconstruction algorithm with incoherent background subtraction that gives extensive access to the missing low spatial frequencies. A procedure for optimizing the reconstruction parameters is presented, and results from Fe-filled C nanospheres, and MgO cubes are compared with phase images obtained using off-axis holography.

4.
ACS Nano ; 10(7): 6988-94, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27309040

RESUMO

Bi2Se3 has recently attracted a lot of attention because it has been reported to be a platform for the realization of three-dimensional topological insulators. Due to this exotic characteristic, it supports excitations of a two-dimensional electron gas at the surface and, hence, formation of Dirac-plasmons. In addition, at higher energies above its bandgap, Bi2Se3 is characterized by a naturally hyperbolic electromagnetic response, with an interesting interplay between type-I and type-II hyperbolic behaviors. However, still not all the optical modes of Bi2Se3 have been explored. Here, using mainly electron energy-loss spectroscopy and corresponding theoretical modeling we investigate the full photonic density of states that Bi2Se3 sustains, in the energy range of 0.8 eV-5 eV. We show that at energies below 1 eV, this material can also support wedge Dyakonov waves. Furthermore, at higher energies a huge photonic density of states is excited in structures such as waveguides and resonators made of Bi2Se3 due to the hyperbolic dispersion.

5.
Ultramicroscopy ; 165: 8-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27043767

RESUMO

Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA