Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 68(11): 1897-910, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21437644

RESUMO

During animal development, tissues and organs are partitioned into compartments that do not intermix. This organizing principle is essential for correct tissue morphogenesis. Given that cell sorting defects during compartmentalization in humans are thought to cause malignant invasion and congenital defects such as cranio-fronto-nasal syndrome, identifying the molecular and cellular mechanisms that keep cells apart at boundaries between compartments is important. In both vertebrates and invertebrates, transcription factors and short-range signalling pathways, such as EPH/Ephrin, Hedgehog, or Notch signalling, govern compartmental cell sorting. However, the mechanisms that mediate cell sorting downstream of these factors have remained elusive for decades. Here, we review recent data gathered in Drosophila that suggest that the generation of cortical tensile forces at compartmental boundaries by the actomyosin cytoskeleton could be a general mechanism that inhibits cell mixing between compartments.


Assuntos
Actomiosina/metabolismo , Compartimento Celular , Modelos Biológicos , Animais , Humanos , Transdução de Sinais
2.
Methods Mol Biol ; 1478: 161-176, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27730580

RESUMO

Chromophore-assisted laser inactivation (CALI) is an optogenetic technique in which light-induced release of reactive oxygen species triggers acute inactivation of a protein of interest, with high spatial and temporal resolution. At its simplest, selective protein inactivation can be achieved via the genetic fusion of the protein to a photosensitizer such as EGFP, and using standard optical setups such as laser scanning confocal microscopes. Although use of CALI in Drosophila is relatively recent, this technique can be a powerful complement to developmental genetics, especially in vivo as it allows visualization of the immediate consequences of local protein inactivation when coupled to time-lapse microscopy analysis. In addition to providing examples of protocols, this chapter is intended as a conceptual framework to support the rational design of CALI experiments.


Assuntos
Inativação Luminosa Assistida por Cromóforo/métodos , Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster/genética , Proteínas de Fluorescência Verde/metabolismo , Miosina Tipo II/antagonistas & inibidores , Fármacos Fotossensibilizantes/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Recuperação de Fluorescência Após Fotodegradação , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/química , Microscopia Confocal , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Fármacos Fotossensibilizantes/química , Imagem com Lapso de Tempo
3.
Nat Cell Biol ; 16(11): 1035-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25344753

RESUMO

Animal development fundamentally relies on the precise control, in space and time, of genome expression. Whereas we have a wealth of information about spatial patterning, the mechanisms underlying temporal control remain poorly understood. Here we show that Pri peptides, encoded by small open reading frames, are direct mediators of the steroid hormone ecdysone for the timing of developmental programs in Drosophila. We identify a previously uncharacterized enzyme of ecdysone biosynthesis, GstE14, and find that ecdysone triggers pri expression to define the onset of epidermal trichome development, through post-translational control of the Shavenbaby transcription factor. We show that manipulating pri expression is sufficient to either put on hold or induce premature differentiation of trichomes. Furthermore, we find that ecdysone-dependent regulation of pri is not restricted to epidermis and occurs over various tissues and times. Together, these findings provide a molecular framework to explain how systemic hormonal control coordinates specific programs of differentiation with developmental timing.


Assuntos
Arrestinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glutationa Transferase/metabolismo , Receptores de Esteroides/metabolismo , Animais , Arrestinas/genética , Diferenciação Celular/genética , Proteínas de Drosophila/genética , Ecdisona/genética , Glutationa Transferase/genética , Mutação/genética , Receptores de Esteroides/genética , Transdução de Sinais/fisiologia , Transaldolase/genética , Transaldolase/metabolismo
4.
Nat Cell Biol ; 13(5): 529-40, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21516109

RESUMO

E-cadherin plays a pivotal role in epithelial morphogenesis. It controls the intercellular adhesion required for tissue cohesion and anchors the actomyosin-driven tension needed to change cell shape. In the early Drosophila embryo, Myosin-II (Myo-II) controls the planar polarized remodelling of cell junctions and tissue extension. The E-cadherin distribution is also planar polarized and complementary to the Myosin-II distribution. Here we show that E-cadherin polarity is controlled by the polarized regulation of clathrin- and dynamin-mediated endocytosis. Blocking E-cadherin endocytosis resulted in cell intercalation defects. We delineate a pathway that controls the initiation of E-cadherin endocytosis through the regulation of AP2 and clathrin coat recruitment by E-cadherin. This requires the concerted action of the formin Diaphanous (Dia) and Myosin-II. Their activity is controlled by the guanine exchange factor RhoGEF2, which is planar polarized and absent in non-intercalating regions. Finally, we provide evidence that Dia and Myo-II control the initiation of E-cadherin endocytosis by regulating the lateral clustering of E-cadherin.


Assuntos
Caderinas/metabolismo , Proteínas de Drosophila/fisiologia , Endocitose , Células Epiteliais/citologia , Linfocinas/fisiologia , Miosina Tipo II/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Junções Aderentes , Animais , Proteínas de Ciclo Celular , Forma Celular , Clatrina/metabolismo , Drosophila/embriologia , Embrião não Mamífero/citologia , Morfogênese
5.
Nat Cell Biol ; 12(1): 60-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19966783

RESUMO

Partitioning tissues into compartments that do not intermix is essential for the correct morphogenesis of animal embryos and organs. Several hypotheses have been proposed to explain compartmental cell sorting, mainly differential adhesion, but also regulation of the cytoskeleton or of cell proliferation. Nevertheless, the molecular and cellular mechanisms that keep cells apart at boundaries remain unclear. Here we demonstrate, in early Drosophila melanogaster embryos, that actomyosin-based barriers stop cells from invading neighbouring compartments. Our analysis shows that cells can transiently invade neighbouring compartments, especially when they divide, but are then pushed back into their compartment of origin. Actomyosin cytoskeletal components are enriched at compartmental boundaries, forming cable-like structures when the epidermis is mitotically active. When MyoII (non-muscle myosin II) function is inhibited, including locally at the cable by chromophore-assisted laser inactivation (CALI), in live embryos, dividing cells are no longer pushed back, leading to compartmental cell mixing. We propose that local regulation of actomyosin contractibility, rather than differential adhesion, is the primary mechanism sorting cells at compartmental boundaries.


Assuntos
Actomiosina/metabolismo , Adesão Celular/fisiologia , Compartimento Celular/fisiologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Animais , Western Blotting , Diferenciação Celular , Movimento Celular , Citocinese/fisiologia , Citoesqueleto/metabolismo , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Miosina Tipo II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA