Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(39): 55072-55088, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34125383

RESUMO

As a consequence of industrial mining activity, high volumes of tailings are scattered around Mexico. Frequently, tailings contain heavy metals (HM) which entail threats against all organisms. The aim of this research was to identify plants and root fungal endophytes in polymetallic polluted tailings with the potential to be used in strategies of bioremediation. Four deposits of mine wastes, situated in a semi-arid region near urban and semi-urban populations, and agricultural areas, were studied. The physical and chemical characteristics of substrates, accumulation of HM in plant tissues, root colonization between arbuscular mycorrizal (AMF) and dark septate endophyte (DSE) fungi, and the identification of DSE fungi isolated from the roots of two plant species were studied. Substrates from all four sites exhibited extreme conditions: high levels in sand; low water retention; poor levels in available phosphorus and nitrogen content; and potentially toxic levels of lead (Pb), cadmium (Cd), and zinc (Zn). The native plants Lupinus campestris, Tagetes lunulata, and Cerdia congestiflora, as well as the exotic Cortaderia selloana and Asphodelus fistulosus, demonstrated a relevant potential role in the phytostabilization and/or phytoextraction of Pb, Cd, and Zn, according to the accumulation of metal in roots and translocation to shoots. Roots of eleven analyzed plant species were differentially co-colonized between AMF and DSE fungi; the presence of arbuscules and microsclerotia suggested an active physiological interaction. Fourteen DSE fungi were isolated from the inner area of roots of T. lunulata and Pennisetum villosum; molecular identification revealed the predominance of Alternaria and other Pleosporales. The use of native DSE fungi could reinforce the establishment of plants for biological reclamation of mine waste in semi-arid climate. Efforts are needed in order to accelerate a vegetation practice of mine wastes under study, which can reduce, in turn, their potential ecotoxicological impact on organisms, human populations, and agricultural areas.


Assuntos
Ecotoxicologia , Endófitos , Poluição Ambiental , Mineração , Plantas/microbiologia , Humanos , Metais Pesados , México
2.
J Microbiol ; 57(6): 485-497, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31134579

RESUMO

Fusarium solani has drawn phytopathogenic, biotechnological, and medical interest. In humans, it is associated with localized infections, such as onychomycosis and keratomycosis, as well as invasive infections in immunocompromised patients. One pathogenicity factor of filamentous fungi is biofilm formation. There is still only scarce information about the in vitro mechanism of the formation and composition of F. solani biofilm. In this work, we describe the biofilm formed by a clinical keratomycosis isolate in terms of its development, composition and susceptibility to different antifungals and ultraviolet light (UV) at different biofilm formation stages. We found five biofilm formation stages using scanning electron microscopy: adherence, germination, hyphal development, maturation, and cell detachment. Using epifluorescence microscopy with specific fluorochromes, it was elucidated that the extracellular matrix consists of carbohydrates, proteins, and extracellular DNA. Specific inhibitors for these molecules showed significant biofilm reductions. The antifungal susceptibility against natamycin, voriconazole, caspofungin, and amphotericin B was evaluated by metabolic activity and crystal violet assay, with the F. solani biofilm preformation to 24 h increased in resistance to natamycin, voriconazole, and caspofungin, while the biofilm preformation to 48 h increased in resistance to amphotericin B. The preformed biofilm at 24 h protected and reduced UV light mortality. F. solani isolate could produce a highly structured extra biofilm; its cellular matrix consists of carbohydrate polymers, proteins, and eDNA. Biofilm confers antifungal resistance and decreases its susceptibility to UV light. The fungal biofilm functions as a survival strategy against antifungals and environmental factors.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Infecções Oculares Fúngicas/microbiologia , Fusarium/efeitos dos fármacos , Fusarium/efeitos da radiação , Ceratite/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos da radiação , Fungos/efeitos dos fármacos , Fungos/efeitos da radiação , Fusarium/patogenicidade , Humanos , Hifas/efeitos dos fármacos , Hifas/efeitos da radiação , México , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Microscopia Eletrônica de Varredura
3.
J Mol Model ; 24(1): 13, 2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29248994

RESUMO

Signaling systems allow microorganisms to sense and respond to different stimuli through the modification of gene expression. The phosphorelay signal transduction system in eukaryotes involves three proteins: a sensor protein, an intermediate protein and a response regulator, and requires the transfer of a phosphate group between two histidine-aspartic residues. The SLN1-YPD1-SSK1 system enables yeast to adapt to hyperosmotic stress through the activation of the HOG1-MAPK pathway. The genetic sequences available from Saccharomyces cerevisiae were used to identify orthologous sequences in Candida glabrata, and putative genes were identified and characterized by in silico assays. An interactome analysis was carried out with the complete genome of C. glabrata and the putative proteins of the phosphorelay signal transduction system. Next, we modeled the complex formed between the sensor protein CgSln1p and the intermediate CgYpd1p. Finally, phosphate transfer was examined by a molecular dynamic assay. Our in silico analysis showed that the putative proteins of the C. glabrata phosphorelay signal transduction system present the functional domains of histidine kinase, a downstream response regulator protein, and an intermediate histidine phosphotransfer protein. All the sequences are phylogenetically more related to S. cerevisiae than to C. albicans. The interactome suggests that the C. glabrata phosphorelay signal transduction system interacts with different proteins that regulate cell wall biosynthesis and responds to oxidative and osmotic stress the same way as similar systems in S. cerevisiae and C. albicans. Molecular dynamics simulations showed complex formation between the response regulator domain of histidine kinase CgSln1 and intermediate protein CgYpd1 in the presence of a phosphate group and interactions between the aspartic residue and the histidine residue. Overall, our research showed that C. glabrata harbors a functional SLN1-YPD1-SSK1 phosphorelay system.


Assuntos
Candida glabrata/metabolismo , Simulação por Computador , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Proteínas Quinases/metabolismo , Transdução de Sinais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosforilação , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Processamento de Proteína Pós-Traducional , Saccharomycetales/metabolismo
4.
J Vis Exp ; (119)2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28117815

RESUMO

Biotherapeutic proteins, such as monoclonal antibodies (mAbs), are feasible alternatives for the treatment of chronic-degenerative diseases. The biological activity of these proteins depends on their physicochemical properties. The use of high-performance techniques like chromatography and capillary electrophoresis has been described for the analysis of physicochemical heterogeneity of mAbs. Nowadays, capillary zone electrophoresis (CZE) technique constitutes one of the most resolutive and sensitive assays for the analysis of biomolecules. Besides, the electro-driven separation in CZE is governed by extensive properties of matter and offers the advantage of analyzing proteins close to their native state. However, the successful implementation of this technique for routine analysis depends on the skills of the analyst at the critical steps during sample and system preparation. The purpose of this tutorial is to detail the steps to succeed in the CZE analysis of mAbs. Further, this protocol can be used for the development and improvement of skills of the personnel involved in protein analytical chemistry laboratories.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Eletroforese Capilar/métodos , Isoformas de Proteínas/isolamento & purificação
5.
Appl Environ Microbiol ; 71(1): 460-6, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15640222

RESUMO

Based on partial 16S sequences, we previously described a novel group of nonsymbiotic, acetylene reduction activity-positive actinomycetes which were isolated from surface-sterilized roots of Casuarina equisetifolia growing in Mexico. An amplified rRNA restriction analysis confirmed that these actinomycetes are distinct from Frankia, a finding substantiated by a 16S rRNA gene phylogenetic analysis of two of the Mexican isolates. Further support for these actinomycetes being separate from Frankia comes from the very low DNA-DNA homology that was found. Nevertheless, the Mexican isolates may be diazotrophs based not only on their ability to grow in N-free medium and reduce acetylene to ethylene but also on the results from (15)N isotope dilution analysis and the finding that a nifH gene was PCR amplified. A comparison of the nifH sequences from the various isolates showed that they are closely related to nifH from Frankia; the similarity was 84 to 98% depending on the host specificity group. An analysis of complete 16S rRNA gene sequences demonstrated that the two strains analyzed in detail are most closely related to actinobacteria in the Thermomonosporaceae and the Micromonosporaceae.


Assuntos
Actinobacteria/classificação , Fixação de Nitrogênio , Raízes de Plantas/microbiologia , Árvores/microbiologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Frankia/classificação , Genes de RNAr , México , Micromonosporaceae/classificação , Micromonosporaceae/genética , Micromonosporaceae/isolamento & purificação , Micromonosporaceae/metabolismo , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA