Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 144: 200-207, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28623798

RESUMO

The increasing application of nanoparticles (NPs) to a variety of new technologies has become a matter of concern due to the potential toxicity of these materials. Many questions about the fate of NPs in the environment and the subsequent impact on ecosystems need to be answered. The aim of this work was to evaluate the ecotoxicity of two alumina-based nanoceramics, γ-Al2O3 (NC) and Ni/ γ-Al2O3 (NiNC) by means of three different standardized tests: Biochemical Oxygen Demand (BOD5), bioassay with luminescent bacteria (Vibrio fischeri; Microtox), and bioassay on amphibian larvae (Rhinella arenarum) (AMPHITOX). BOD5 values of a very biodegradable mixture (glucose/glutamic acid) decreased with the addition of NiNC(43.8%) and NC (31.6%) with respect to control samples (52.9%). Microtox test results indicated that NiNC presents higher toxicity than NC, with EC50s values of 16.1% and 29.9% respectively; a reduced toxicity was observed, however, in presence of organic matter, thus obtaining EC50s of 37.8% and 19.4%. The results of AMPHITOX test showed a significant increase in the toxicity of both substances over time, the NiNC toxicity being greater than that of NC. The values of 96h-LC50 and 504h-LC50 determined for NiNC were 1.58 and 0.83mg/L, respectively, and 14.5 and 10.5mg/L for NC samples. Amphibian larvae exhibited collapsed cavities, edema, axial flexures, and behavioral alterations as hyperkinesia and reduced movements. These results evidence the vulnerability of wildlife to xenobiotics and the need to develop specific standardized ecotoxicity tests in order to help environmental sustainability and natural species conservation.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Óxido de Alumínio/toxicidade , Monitoramento Ambiental/métodos , Larva/efeitos dos fármacos , Nanopartículas/toxicidade , Níquel/toxicidade , Animais , Bioensaio , Análise da Demanda Biológica de Oxigênio , Bufo marinus , Ecotoxicologia , Propriedades de Superfície , Xenobióticos
2.
Environ Toxicol Pharmacol ; 80: 103508, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33011327

RESUMO

The employ of nanomaterials (NMs) has exponentially grown due to the large number of technological advances in industrial, pharmaceutical and medical areas. That is the case of alumina (Al) nanoparticles which are extensively employed as support in heterogeneous catalysis processes. However, these NMs can cause great toxicity because of their ubiquitous properties, such as extremely small size and high specific surface area. So, it is required to assess the potential deleterious effects of these NMs on living organisms. In the present study, we analyze the oxidative stress and genotoxic potential of a nanoceramic catalyst Ni/-Al2O3 (NC) and the NMs involved in their synthesis, -Al2O3 support (SPC) and NiO/-Al2O3 precursor (PC) on Rhinella arenarum larvae. Biomarkers of oxidative stress and genotoxic damage were measured in tadpoles exposed to 5 and 25 mg/L of each NMs for 96 h. The results indicated an inhibition of catalase activity in tadpoles exposed to both concentrations of PC and to 25 mg/L of SPC and NC. Moreover, both exposure concentrations of PC and NC significantly inhibited superoxide dismutase activity. Exposure to the three NMs caused inhibition of glutathione S-transferase activity, but there were no significant variations in reduced glutathione levels. Oxidative stress damage (lipid peroxidation) was observed in tadpoles treated with 25 mg/L PC, while the other treatments did not produce alterations. The MNs frequency significantly increased in larvae exposed to 25 mg/L PC indicating irreversible genotoxic damage. The results show that these NMs exert genotoxic effects and antioxidant defense system disruption in R. arenarum larvae.


Assuntos
Óxido de Alumínio/toxicidade , Bufo arenarum , Cerâmica/toxicidade , Larva/efeitos dos fármacos , Mutagênicos/toxicidade , Nanopartículas/toxicidade , Níquel/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Testes para Micronúcleos
3.
Environ Toxicol Pharmacol ; 69: 36-43, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30953932

RESUMO

Alumina nanoparticles (NP-Al2O3) are widely used but their environmental effects are unknown, so they can become potentially dangerous. The aim of this study was to evaluate the toxicity of a nanoceramic catalyst Ni/γ-Al2O3 (NC) and NPs involved in their synthesis, γ-Al2O3 support (SPC) and NiO/γ-Al2O3 precursor (PC) on Rhinella arenarum embryo-larval development. The NPs toxicity significantly increased over time obtaining a similar sensitivity to PC and NC (336 h-LC50 = 4.03 and 5.11 mg/L respectively) and very low sensitivity to SPC (336 h-LC50 = 90.83 mg/L). Embryos exposed to SPC and PC exhibited general underdevelopment, axial flexures and behavioral alterations. Pharyngeal and intestinal epithelia alterations at the level of cell surface as dissociation, apoptosis and numerous lysosomes were observed at light and transmission electronic microscopy. Images of scanning electron microscope with backscattered electron detector revealed the presence of nickel in the intestinal epithelium. The increased toxicity of PC could be due to the presence of Ni as oxide which could interfere with vital functions such as breathing and feeding. Taking into account the exponential production and use of these NPs it is expected that their pollution levels will considerably increase and amphibians will be more exposed and at higher risk.


Assuntos
Óxido de Alumínio/toxicidade , Bufonidae , Cerâmica/toxicidade , Nanoestruturas/toxicidade , Níquel/toxicidade , Teratogênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Larva/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/veterinária
4.
Appl Radiat Isot ; 65(9): 987-94, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17531497

RESUMO

Methodological considerations on the determination of benthic methyl-mercury (CH(3)Hg) production potentials were investigated on lake sediment, using (197)Hg radiotracer. Three methods to arrest bacterial activity were compared: flash freezing, thermal sterilization, and gamma-irradiation. Flash freezing showed similar CH(3)Hg recoveries as thermal sterilization, which was both 50% higher than the recoveries obtained with gamma-ray irradiation. No additional radiolabel was recovered in kill-control samples after an additional 24 or 65 h of incubation, suggesting that all treatments were effective at arresting Hg(II)-methylating bacterial activity, and that the initial recoveries are likely due to non-methylated (197)Hg(II) carry-over in the organic extraction and/or [(197)Hg]CH(3)Hg produced via abiotic reactions. Two CH(3)Hg extraction methods from sediment were compared: (a) direct extraction into toluene after sediment leaching with CuSO(4) and HCl and (b) the same extraction with an additional back-extraction step to thiosulphate. Similar information was obtained with both methods, but the low efficiency observed and the extra work associated with the back-extraction procedure represent significant disadvantages, even tough the direct extraction involves higher Hg(II) carry over.


Assuntos
Compostos de Metilmercúrio/metabolismo , Poluentes da Água/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos , Radioisótopos de Mercúrio , Temperatura
5.
Chemosphere ; 88(5): 584-90, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22472096

RESUMO

The emission of volatile pollutants from the volcanic eruption of the Puyehue-Cordón Caulle complex (North Patagonia Andean Range) that started in June 4th, 2011, was investigated by bioindication means with the epyphytic fruticose lichen Usnea sp. The elemental composition of pooled samples made up with 10 lichen thalli were analysed by Instrumental Neutron Activation Analysis. Eleven sampling sites were selected within the impacted region at different distance from the volcanic source. Five sites were selected as they were already sampled in a previous study prior to the eruption. Two other new sampling sites were selected from outside the impacted zone to provide non-impacted baseline sites. The elements associated with the lichen incorporation of particulate matter (PM) of geological origin were identified by linear correlation with a geochemical tracer (Sm concentrations). The elements associated with PM uptake were Ce, Eu, Fe, Hf, La, Lu, Na, Nd, Sb, Sc, Se, Ta, Tb, Th, U, and Yb. Arsenic and Cs concentrations showed contributions exceeding the PM fraction in sites near the volcanic centre, also higher than the baseline concentrations, which could be associated with permanent emissions from the geothermal system of the Puyehue-Cordón Caulle complex. The lichen concentrations of Ba, Ca, Co, Hg, K, Rb, Sr, and Zn were not associated with the PM, not showing higher concentrations in the sites nearby the volcanic source or respect to the baseline values either. Therefore, there is no indication of the emission of volatile forms of these elements in the lichen records. The lichen records only identified Br volatile emissions associated with the Puyehue-Cordón Caulle complex eruption in 2011.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Poluentes Ambientais/química , Erupções Vulcânicas/análise , Compostos Inorgânicos/análise , Compostos Inorgânicos/química , Líquens/química , Material Particulado/análise , Material Particulado/química , Volatilização
6.
Anal Bioanal Chem ; 387(6): 2185-97, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17205268

RESUMO

Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H2SO4 or HCl were evaluated in freshwater sediments using 197Hg radiotracer. Values obtained for the 197Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197Hg2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H2SO4 method is recommended, since it is free from these interferences. 197Hg radiotracer (T1/2=2.673 d) has a production rate that is about 50 times higher than that of 203Hg (T1/2=46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203Hg when it is used it in short-term experiments and produced by the irradiation of 196Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196Hg isotope is increased, the specific activity of the 197Hg tracer can be significantly improved. In the present work, 197Hg tracer was produced from mercury 51.58% enriched in the 196Hg isotope, and a 340-fold increase in specific activity with respect to natural mercury targets was obtained. When this high specific activity tracer is employed, mercury methylation and reduction experiments with minimum mercury additions are feasible. Tracer recovery in methylation experiments (associated with Me197Hg production from 197Hg2+ spike, but also with Hg2+ contamination and Me197Hg artefacts) with marine sediments was about 0.005% g-1 WS (WS: wet sediment) after 20 h incubation with mercury additions of 0.05 ng g-1 WS, which is far below natural mercury levels. In this case, the amount of Hg2+ reduced to Hg0 (expressed as the percent 197Hg0 recovered with respect to the 197Hg2+ added) varied from 0.13 to 1.6% g-1 WS. Me197Hg production from 197Hg2+ spike after 20 h of incubation of freshwater sediment ranged from 0.02 to 0.13% g-1 WS with mercury additions of 2.5 ng g-1 WS, which is also far below natural levels. 197Hg0 recoveries were low, 0.0058+/-0.0013% g-1 WS, but showed good reproducibility in five replicates. Me197Hg production from 197Hg2+ spiked in freshwater samples ranged from 0.1 to 0.3% over a period of three days with mercury additions of 10 ng L-1. A detection limit of 0.05% for Me197Hg production from 197Hg2+ spike was obtained in seawater in a 25 h incubation experiment with mercury additions of 12 ng L-1.


Assuntos
Sedimentos Geológicos/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Brometos , Água Doce , Ácido Clorídrico , Radioisótopos de Mercúrio , Oxirredução , Compostos de Potássio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ácidos Sulfônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA