Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 31(4): 1028-1043, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902193

RESUMO

Wild populations must continuously respond to environmental changes or they risk extinction. Those responses can be measured as phenotypic rates of change, which can allow us to predict contemporary adaptive responses, some of which are evolutionary. About two decades ago, a database of phenotypic rates of change in wild populations was compiled. Since then, researchers have used (and expanded) this database to examine phenotypic responses to specific types of human disturbance. Here, we update the database by adding 5675 new estimates of phenotypic change. Using this newer version of the data base, now containing 7338 estimates of phenotypic change, we revisit the conclusions of four published articles. We then synthesize the expanded database to compare rates of change across different types of human disturbance. Analyses of this expanded database suggest that: (i) a small absolute difference in rates of change exists between human disturbed and natural populations, (ii) harvesting by humans results in higher rates of change than other types of disturbance, (iii) introduced populations have increased rates of change, and (iv) body size does not increase through time. Thus, findings from earlier analyses have largely held-up in analyses of our new database that encompass a much larger breadth of species, traits, and human disturbances. Lastly, we use new analyses to explore how various types of human disturbances affect rates of phenotypic change, and we call for this database to serve as a steppingstone for further analyses to understand patterns of contemporary phenotypic change.


Assuntos
Evolução Biológica , Tamanho Corporal , Fenótipo
2.
Mol Ecol ; 27(15): 3087-3102, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29920823

RESUMO

Epigenetic modification, especially DNA methylation, can play an important role in mediating gene regulatory response to environmental stressors and may be a key process affecting phenotypic plasticity and adaptation. Parasites are potent stressors with profound physiological and ecological effects on their hosts, yet it remains unclear how parasites influence host methylation patterns. Here, we used a well-studied host-parasite system, the guppy Poecilia reticulata and its ectoparasitic monogenean Gyrodactylus turnbulli to gain mechanistic insight into the dynamics of DNA methylation in host-parasite interactions. To explore this, we quantitatively measured genome-wide DNA methylation in guppy skin tissue using reduced representation bisulphite sequencing and characterized differential methylation patterns in guppies during distinct phases of infection. We identified 365, 313, and 741 differentially methylated regions (DMRs) between infected and control fish in early infection, peak infection and recovery phases, respectively. The magnitude of the methylation difference was moderate in DMRs, with an average of 29% (early infection), 27% (peak infection) and 30% (recovery) differential methylation per DMR. Approximately 50% of DMRs overlapped with CpG islands, and over half of the DMRs overlapped with gene bodies, several of which encode proteins relevant to immune response. These findings provide the first evidence of an epigenetic signature of infection by ectoparasites and demonstrate the changing relationship between epigenetic variation and immune response in distinct phases of infection.


Assuntos
Metilação de DNA/genética , Poecilia/genética , Animais , Ilhas de CpG/genética , Epigenômica , Interações Hospedeiro-Parasita/genética
3.
Oecologia ; 172(1): 155-66, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23053240

RESUMO

Studies of phenotypic variation in nature often consider only a single potential selective agent. In such cases, it remains an open question as to whether variation attributed to that single measured agent might be influenced by some other unmeasured agent. Previous research has shown that phenotypic variation in the Trinidadian guppy (Poecilia reticulata) is strongly influenced by predation regime, and we here ask whether parasitism might represent an additional important selective agent shaping this variation. We performed a field survey of 26 natural guppy populations of known predation regime in northern Trinidad. We quantified levels of parasitism of guppies by the monogenean ecotoparasite, Gyrodactylus, and examined whether this parasite was associated with guppy body size or male colour. Spatial variation in Gyrodactylus parasitism was consistent between years, and parasite prevalence was generally, but not always, higher at high-predation sites than at low-predation sites. Consistent with previous work, predation regime was related to guppy size and some aspects of male colour, whereas parasitism showed few and only minor associations with the same traits. Moreover, a consideration of parasitism did not alter any interpretations regarding associations between guppy traits and predation regimes. These results suggest that parasitism, at least as quantified in the present study, does not play a major role in shaping variation in guppy body size or colour. Nevertheless, considerable variation in these traits, even within a predation regime, suggests the likely importance of other selective agents beyond just predation regime.


Assuntos
Platelmintos/fisiologia , Poecilia/parasitologia , Comportamento Predatório , Animais , Tamanho Corporal , Masculino , Preferência de Acasalamento Animal , Análise Multivariada , Fenótipo , Poecilia/anatomia & histologia , Poecilia/fisiologia , Seleção Genética
4.
Oecologia ; 170(1): 77-88, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22402622

RESUMO

Natural populations often face multiple mortality sources. Adaptive responses to one mortality source might also be beneficial with respect to other sources of mortality, resulting in "reinforcing adaptations"; or they might be detrimental with respect to other sources of mortality, resulting in "conflicting adaptations". We explored these possibilities by testing experimentally if the responses of guppies (Poecilia reticulata) to the monogenean ectoparasitic worm Gyrodactylus differed between populations adapted to different predation regimes. In experimental stream channels designed to replicate the natural environment, we exposed eight guppy populations (high-predation and low-predation populations from each of four separate rivers) either to their local Gyrodactylus parasites (infection treatment) or to the absence of those parasites (control). We found that infection dynamics varied dramatically among populations in a repeatable fashion, but that this variation was not related to the predation regime of origin. Consistent with previous work, high-predation guppy females gained more mass, had lower reproductive investment, and had more but smaller embryos than did low-predation females. Relative to control (no parasite) channels, guppies from treatment (infected) channels gained less mass but produced similar numbers and sizes of embryos-and thus had a higher reproductive effort. However, no interaction was evident between infection treatment and predation regime. We conclude that parasitism by Gyrodactylus and predation are both likely selective forces for guppies, but that adaptation to predation does not have an obvious deterministic effect on host-parasite dynamics or on life-history traits of female guppies.


Assuntos
Cadeia Alimentar , Interações Hospedeiro-Parasita , Poecilia/parasitologia , Adaptação Fisiológica , Animais , Tamanho Corporal , Feminino , Masculino , Platelmintos/parasitologia , Dinâmica Populacional , Reprodução
5.
Int J Parasitol ; 52(7): 459-467, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35331715

RESUMO

A number of examples exist of trade-offs between mating success and survival; that is, success in one fitness component comes at the cost of success in the other fitness component. However, these expected trade-offs are - perhaps even more commonly - not observed. One explanation for this apparent paradox of missing trade-offs could be that the other factors generating fitness variation across individuals confound or obscure the expected trade-off. These confounding effects could arise in two general ways: (i) the additional source of variation could positively (or negatively) influence both fitness components ("shared confounder" hypothesis), or (ii) the additional source of variation could influence only one fitness component ("non-shared confounder" hypothesis). We tested whether parasitism by Gyrodactylus spp. could be a confounder of trade-offs between female preference and susceptibility to predation for male Trinidadian guppies (Poecilia reticulata). As in previous work, we did not find the expected trade-off; that is, the males preferred by females were not more likely to be eaten by predators. Because half of the experimental males were infected by Gyrodactylus in a paired design, we were able to show that females discriminated against infected males, but that infected males were not more susceptible to predation. Our results thus provide support for the non-shared confounder hypothesis. That is, by negatively affecting one fitness component (female choice) but not the other (susceptibility to predation), parasitism by Gyrodactylus could obscure the expected trade-off between female preference and susceptibility to predation.


Assuntos
Poecilia , Trematódeos , Animais , Feminino , Humanos , Masculino , Comportamento Predatório , Reprodução , Simbiose
6.
Int J Parasitol ; 45(6): 409-17, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25770861

RESUMO

Hosts and parasites are in a perpetual co-evolutionary "arms race". Due to their short generation time and large reproductive output, parasites are commonly believed to be ahead in this race, although increasing evidence exists that parasites are not always ahead in the arms race - in part owing to evolutionary lineage and recent ecological history. We assess local adaptation of hosts and parasites, and determine whether adaptation was influenced by ecological or evolutionary history, using full reciprocal cross-infections of four Gyrodactylus ectoparasite populations and their four guppy (Poecilia reticulata) host populations in Trinidad. To consider effects of evolutionary lineage and recent ecology, these four populations were collected from two different river drainages (Marianne and Aripo) and two different predation environments (high and low). The highest infection levels were obtained when parasites from the Aripo lineage infected guppies from the Marianne lineage, indicating a higher infectivity, virulence and/or reproductive success of the Aripo parasites. Aripo lineage guppies were also better able to limit Gyrodactylus population growth than guppies from the Marianne River, indicating their strong "resistance" to Gyrodactylus regardless of the source of the parasite. Predation environment had no detectable influence on host-parasite population dynamics of sympatric or allopatric combinations. The much stronger effect of evolutionary lineage (i.e., river) than recent ecological history (i.e., predation) emphasises its importance in driving co-evolutionary dynamics, and should be explored further in future studies on local host-parasite adaptation.


Assuntos
Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Poecilia/parasitologia , Adaptação Fisiológica , Animais , Evolução Biológica , Ecossistema , Ectoparasitoses/epidemiologia , Ectoparasitoses/parasitologia , Doenças dos Peixes/epidemiologia , Predisposição Genética para Doença , Rios , Trinidad e Tobago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA