Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38991010

RESUMO

The biology of CDKL (Cyclin-Dependent Kinase-Like) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with MAPKs (Mitogen-Activated Protein Kinases) and GSK3 (glycogen synthase kinase 3), though their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all the five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse which exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, these studies have unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.

2.
Kidney Int ; 105(1): 99-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38054920

RESUMO

Acute kidney injury (AKI) affects over 13 million people worldwide annually and is associated with a 4-fold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces cell death and worsens AKI. The factors that trigger DDR to switch from pro-repair to pro-cell death remain to be resolved. Here we investigated the role of interleukin 22 (IL-22), an IL-10 family member whose receptor (IL-22RA1) is expressed on proximal tubule cells (PTCs), in DDR activation and AKI. Using cisplatin and aristolochic acid (AA) induced nephropathy as models of DNA damage, we identified PTCs as a novel source of urinary IL-22. Functionally, IL-22 binding IL-22RA1 on PTCs amplified the DDR. Treating primary PTCs with IL-22 alone induced rapid activation of the DDR. The combination of IL-22 and either cisplatin- or AA-induced cell death in primary PTCs, while the same dose of cisplatin or AA alone did not. Global deletion of IL-22 protected against cisplatin- or AA-induced AKI, reduced expression of DDR components, and inhibited PTC cell death. To confirm PTC IL-22 signaling contributed to AKI, we knocked out IL-22RA1 specifically in kidney tubule cells. IL-22RA1ΔTub mice displayed reduced DDR activation, cell death, and kidney injury compared to controls. Thus, targeting IL-22 represents a novel therapeutic approach to prevent the negative consequences of the DDR activation while not interfering with repair of damaged DNA.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Interleucina 22 , Túbulos Renais Proximais , Injúria Renal Aguda/prevenção & controle , Morte Celular , Dano ao DNA , Reparo do DNA
3.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L568-L579, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697923

RESUMO

The prevalence of electronic cigarette (EC) use among adult with asthma has continued to increase over time, in part due to the belief of being less harmful than smoking. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. In the present project, we tested the hypothesis that EC use contributes to respiratory damage and worsening inflammation in the lungs of patients with asthma. To define the consequences of EC exposure in established asthma, we used a mouse model with/without preexisting asthma for short-term exposure to EC aerosols. C57/BL6J mice were sensitized and challenged with a DRA (dust mite, ragweed, Aspergillus fumigates, 200 µg/mL) mixture and exposed daily to EC with nicotine (2% nicotine in 30:70 propylene glycol: vegetable glycerin) or filtered air for 2 wk. The mice were evaluated at 24 h after the final EC exposure. After EC exposure in asthmatic mice, lung inflammatory cell infiltration and goblet cell hyperplasia were increased, whereas EC alone did not cause airway inflammation. Our data also show that mitochondrial DNA (mtDNA) content and a key mtDNA regulator, mitochondrial transcription factor A (TFAM), are reduced in asthmatic EC-exposed mice in a sex-dependent manner. Together, these results indicate that TFAM loss in lung epithelium following EC contributes to male-predominant sex pathological differences, including mitochondrial damage, inflammation, and remodeling in asthmatic airways.NEW & NOTEWORTHY Respiratory immunity is dysregulated in preexisting asthma, and further perturbations by EC use could exacerbate asthma severity. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. We found that EC has unique biological impacts in lungs and potential sex differences with loss of TFAM, a key mtDNA regulator, in lung epithelial region from our animal EC study.


Assuntos
Asma , Sistemas Eletrônicos de Liberação de Nicotina , Pneumonia , Humanos , Adulto , Masculino , Feminino , Camundongos , Animais , Nicotina/toxicidade , Aerossóis e Gotículas Respiratórios , Asma/patologia , Pulmão/patologia , Pneumonia/patologia , Inflamação/patologia , Modelos Animais de Doenças , DNA Mitocondrial
4.
Kidney Int ; 103(6): 1093-1104, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921719

RESUMO

Transcriptional profiling studies have identified several protective genes upregulated in tubular epithelial cells during acute kidney injury (AKI). Identifying upstream transcriptional regulators could lead to the development of therapeutic strategies augmenting the repair processes. SOX9 is a transcription factor controlling cell-fate during embryonic development and adult tissue homeostasis in multiple organs including the kidneys. SOX9 expression is low in adult kidneys; however, stress conditions can trigger its transcriptional upregulation in tubular epithelial cells. SOX9 plays a protective role during the early phase of AKI and facilitates repair during the recovery phase. To identify the upstream transcriptional regulators that drive SOX9 upregulation in tubular epithelial cells, we used an unbiased transcription factor screening approach. Preliminary screening and validation studies show that zinc finger protein 24 (ZFP24) governs SOX9 upregulation in tubular epithelial cells. ZFP24, a Cys2-His2 (C2H2) zinc finger protein, is essential for oligodendrocyte maturation and myelination; however, its role in the kidneys or in SOX9 regulation remains unknown. Here, we found that tubular epithelial ZFP24 gene ablation exacerbated ischemia, rhabdomyolysis, and cisplatin-associated AKI. Importantly, ZFP24 gene deletion resulted in suppression of SOX9 upregulation in injured tubular epithelial cells. Chromatin immunoprecipitation and promoter luciferase assays confirmed that ZFP24 bound to a specific site in both murine and human SOX9 promoters. Importantly, CRISPR/Cas9-mediated mutation in the ZFP24 binding site in the SOX9 promoter in vivo led to suppression of SOX9 upregulation during AKI. Thus, our findings identify ZFP24 as a critical stress-responsive transcription factor protecting tubular epithelial cells through SOX9 upregulation.


Assuntos
Injúria Renal Aguda , Fatores de Transcrição SOX9 , Animais , Humanos , Camundongos , Injúria Renal Aguda/prevenção & controle , Células Epiteliais/metabolismo , Rim/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima , Dedos de Zinco
5.
Mol Carcinog ; 62(8): 1201-1212, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37132760

RESUMO

Head and neck squamous cell carcinoma (HNSCC) accounts for over 10,000 deaths in the United States annually. Approximately 80% of HNSCC are human papillomavirus (HPV)-negative which have an overall poorer prognosis compared to the HPV-positive disease. Treatment options are mainly nontargeted chemotherapy, radiation, and surgery. The cyclin-d-CDK4/6-RB pathway, which regulates cell cycle progression, is often deregulated in HNSCC, making it an attractive therapeutic target. In the current study, we investigated the therapeutic effects of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors in preclinical models of HNSCCs. Our results show that the specific CDK4/6 inhibitor, abemaciclib, inhibited cell growth, and induced apoptosis in HNSCC cell lines. We also demonstrated that both the pro-survival autophagy pathway and the ERK pathway in HNSCC cells were activated with abemaciclib treatment through the generation of reactive oxygen species (ROS). Coinhibition of CDK4/6 and autophagy synergistically decreased cell viability, induced apoptosis, and inhibited tumor growth in both in vitro and in vivo preclinical HNSCC models. These results reveal a potential therapeutic strategy that supports the rationale for further clinical development of a combination of CDK4/6 and autophagy inhibitors in HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Apoptose , Autofagia , Linhagem Celular Tumoral
6.
J Biol Chem ; 295(48): 16328-16341, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32887795

RESUMO

Acute kidney injury (AKI) is a common clinical condition associated with diverse etiologies and abrupt loss of renal function. In patients with sepsis, rhabdomyolysis, cancer, and cardiovascular disorders, the underlying disease or associated therapeutic interventions can cause hypoxia, cytotoxicity, and inflammatory insults to renal tubular epithelial cells (RTECs), resulting in the onset of AKI. To uncover stress-responsive disease-modifying genes, here we have carried out renal transcriptome profiling in three distinct murine models of AKI. We find that Vgf nerve growth factor inducible gene up-regulation is a common transcriptional stress response in RTECs to ischemia-, cisplatin-, and rhabdomyolysis-associated renal injury. The Vgf gene encodes a secretory peptide precursor protein that has critical neuroendocrine functions; however, its role in the kidneys remains unknown. Our functional studies show that RTEC-specific Vgf gene ablation exacerbates ischemia-, cisplatin-, and rhabdomyolysis-associated AKI in vivo and cisplatin-induced RTEC cell death in vitro Importantly, aggravation of cisplatin-induced renal injury caused by Vgf gene ablation is partly reversed by TLQP-21, a Vgf-derived peptide. Finally, in vitro and in vivo mechanistic studies showed that injury-induced Vgf up-regulation in RTECs is driven by the transcriptional regulator Sox9. These findings reveal a crucial downstream target of the Sox9-directed transcriptional program and identify Vgf as a stress-responsive protective gene in kidney tubular epithelial cells.


Assuntos
Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Fatores de Crescimento Neural/biossíntese , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Células Epiteliais/patologia , Túbulos Renais/patologia , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/genética , Fatores de Transcrição SOX9/genética
7.
Kidney Int ; 100(6): 1214-1226, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534550

RESUMO

A multitude of disease and therapy related factors drive the frequent development of kidney disorders in cancer patients. Along with chemotherapy, the newer targeted therapeutics can also cause kidney dysfunction through on and off-target mechanisms. Interestingly, among the small molecule inhibitors approved for the treatment of cancers that harbor BRAF-kinase activating mutations, vemurafenib can trigger tubular damage and acute kidney injury. BRAF is a proto-oncogene involved in cell growth. To investigate the underlying mechanisms, we developed cell culture and mouse models of vemurafenib kidney toxicity. At clinically relevant concentrations vemurafenib induces cell-death in transformed and primary mouse and human kidney tubular epithelial cells. In mice, two weeks of daily vemurafenib treatment causes moderate acute kidney injury with histopathological characteristics of kidney tubular epithelial cells injury. Importantly, kidney tubular epithelial cell-specific BRAF gene deletion did not influence kidney function under normal conditions or alter the severity of vemurafenib-associated kidney impairment. Instead, we found that inhibition of ferrochelatase, an enzyme involved in heme biosynthesis contributes to vemurafenib kidney toxicity. Ferrochelatase overexpression protected kidney tubular epithelial cells and conversely ferrochelatase knockdown increased the sensitivity to vemurafenib-induced kidney toxicity. Thus, our studies suggest that vemurafenib-associated kidney tubular epithelial cell dysfunction and kidney toxicity is BRAF-independent and caused, in part, by off-target ferrochelatase inhibition.


Assuntos
Ferroquelatase , Proteínas Proto-Oncogênicas B-raf , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Indóis/toxicidade , Rim/metabolismo , Camundongos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sulfonamidas/toxicidade , Vemurafenib
8.
Am J Physiol Renal Physiol ; 319(5): F920-F929, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044867

RESUMO

Acute kidney injury (AKI) is a common clinical syndrome associated with adverse short- and long-term sequelae. Renal tubular epithelial cell (RTEC) dysfunction and cell death are among the key pathological features of AKI. Diverse systemic and localized stress conditions such as sepsis, rhabdomyolysis, cardiac surgery, and nephrotoxic drugs can trigger RTEC dysfunction. Through an unbiased RNA inhibition screen, we recently identified cyclin-dependent kinase-like 5 (Cdkl5), also known as serine/threonine kinase-9, as a critical regulator of RTEC dysfunction associated with nephrotoxic and ischemia-associated AKI. In the present study, we examined the role of Cdkl5 in rhabdomyolysis-associated AKI. Using activation-specific antibodies and kinase assays, we found that Cdkl5 is activated in RTECs early during the development of rhabdomyolysis-associated AKI. Furthermore, we found that RTEC-specific Cdkl5 gene ablation mitigates rhabdomyolysis-associated renal impairment. In addition, the small-molecule kinase inhibitor AST-487 alleviated rhabdomyolysis-associated AKI in a Cdkl5-dependent manner. Mechanistically, we demonstrated that Cdkl5 phosphorylates the transcriptional regulator sex-determining region Y box 9 (Sox9) and suppresses its protective function under stress conditions. On the basis of these results, we propose that, by suppressing the protective Sox9-directed transcriptional program, Cdkl5 contributes to rhabdomyolysis-associated renal impairment. All together, the present study identified Cdkl5 as a critical stress-induced kinase that drives RTEC dysfunction and kidney injury linked with distinct etiologies.


Assuntos
Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição SOX9/metabolismo , Injúria Renal Aguda/patologia , Morte Celular/fisiologia , Humanos , Rim/metabolismo , Fosforilação , Rabdomiólise/induzido quimicamente , Transdução de Sinais/fisiologia
10.
Allergy ; 74(3): 535-548, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30288751

RESUMO

BACKGROUND: The pathogenesis of asthma and airway obstruction is the result of an abnormal response to different environmental exposures. The scientific premise of our study was based on the finding that FoxO1 expression is increased in lung macrophages of mice after allergen exposure and human asthmatic patients. Macrophages are capable of switching from one functional phenotype to another, and it is important to understand the mechanisms involved in the transformation of macrophages and how their cellular function affects the peribronchial stromal microenvironment. METHODS: We employed a murine asthma model, in which mice were treated by intranasal insufflation with allergens for 2-8 weeks. We used both a pharmacologic approach using a highly specific FoxO1 inhibitor and genetic approaches using FoxO1 knockout mice (FoxO1fl/fl LysMcre). Cytokine level in biological fluids was measured by ELISA and the expression of encoding molecules by NanoString assay and qRT-PCR. RESULTS: We show that the levels of FoxO1 gene are significantly elevated in the airway macrophages of patients with mild asthma in response to subsegmental bronchial allergen challenge. Transcription factor FoxO1 regulates a pro-asthmatic phenotype of lung macrophages that is involved in the development and progression of chronic allergic airway disease. We have shown that inhibition of FoxO1 induced phenotypic conversion of lung macrophages and downregulates pro-asthmatic and pro-fibrotic gene expression by macrophages, which contribute to airway inflammation and airway remodeling in allergic asthma. CONCLUSION: Targeting FoxO1 with its downstream regulator IRF4 is a novel therapeutic target for controlling allergic inflammation and potentially reversing fibrotic airway remodeling.


Assuntos
Asma/etiologia , Asma/metabolismo , Proteína Forkhead Box O1/genética , Regulação Neoplásica da Expressão Gênica , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transferência Adotiva , Alérgenos/imunologia , Animais , Asma/diagnóstico , Asma/terapia , Testes de Provocação Brônquica , Broncoscopia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Proteína Forkhead Box O1/metabolismo , Humanos , Camundongos , Células Th2/imunologia , Células Th2/metabolismo
11.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798634

RESUMO

Acylaminoindazole-based inhibitors of CDKL2 were identified via analyses of cell-free binding and selectivity data. Compound 9 was selected as a CDKL2 chemical probe based on its potent inhibition of CDKL2 enzymatic activity, engagement of CDKL2 in cells, and excellent kinome-wide selectivity, especially when used in cells. Compound 16 was designed as a negative control to be used alongside compound 9 in experiments to interrogate CDKL2-mediated biology. A solved co-crystal structure of compound 9 bound to CDKL2 highlighted key interactions it makes within its ATP-binding site. Inhibition of downstream phosphorylation of EB2, a CDKL2 substrate, in rat primary neurons provided evidence that engagement of CDKL2 by compound 9 in cells resulted in inhibition of its activity. When used at relevant concentrations, compound 9 does not impact the viability of rat primary neurons or certain breast cancer cells nor elicit consistent changes in the expression of proteins involved in epithelial-mesenchymal transition.

12.
Mol Metab ; 79: 101849, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056691

RESUMO

OBJECTIVE: Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Although tubular metabolism changes markedly following acute kidney injury (AKI), it remains unclear which metabolic alterations are beneficial or detrimental. By analyzing large-scale, publicly available datasets, we observed that AKI consistently leads to downregulation of the mitochondrial pyruvate carrier (MPC). This investigation aimed to understand the contribution of the tubular MPC to kidney function, metabolism, and acute injury severity. METHODS: We generated tubular epithelial cell-specific Mpc1 knockout (MPC TubKO) mice and employed renal function tests, in vivo renal 13C-glucose tracing, mechanistic enzyme activity assays, and tests of injury and survival in an established rhabdomyolysis model of AKI. RESULTS: MPC TubKO mice retained normal kidney function, displayed unchanged markers of kidney injury, but exhibited coordinately increased enzyme activities of the pentose phosphate pathway and the glutathione and thioredoxin oxidant defense systems. Following rhabdomyolysis-induced AKI, compared to WT control mice, MPC TubKO mice showed increased glycolysis, decreased kidney injury and oxidative stress markers, and strikingly increased survival. CONCLUSIONS: Our findings suggest that decreased renal tubular mitochondrial pyruvate uptake hormetically upregulates oxidant defense systems before AKI and is a beneficial adaptive response after rhabdomyolysis-induced AKI. This raises the possibility of therapeutically modulating the MPC to attenuate AKI severity.


Assuntos
Injúria Renal Aguda , Rabdomiólise , Camundongos , Animais , Transportadores de Ácidos Monocarboxílicos/metabolismo , Injúria Renal Aguda/metabolismo , Oxirredução , Rabdomiólise/induzido quimicamente , Rabdomiólise/metabolismo , Oxidantes/efeitos adversos
13.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333314

RESUMO

Acute kidney injury (AKI) affects over 13 million people world-wide annually and is associated with a fourfold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces to cell death and worsens AKI. The factors that trigger the switch from pro-reparative to pro-cell death DDR remain to be resolved. Here we investigate the role of interleukin 22 (IL-22), an IL-10 family member whose receptor (IL-22RA1) is expressed on proximal tubule cells (PTCs), in DDR activation and AKI. Using cisplatin and aristolochic acid (AA) induced nephropathy as models of DNA damage, we identify PTCs as a novel source of urinary IL-22, making PTCs the only epithelial cells known to secret IL-22, to our knowledge. Functionally, IL-22 binding its receptor (IL-22RA1) on PTCs amplifies the DDR. Treating primary PTCs with IL-22 alone induces rapid activation of the DDR in vitro. The combination of IL-22 + cisplatin or AA treatment on primary PTCs induces cell death, while the same dose of cisplatin or AA alone does not. Global deletion of IL-22 protects against cisplatin or AA induced AKI. IL-22 deletion reduces expression of components of the DDR and inhibits PTC cell death. To confirm PTC IL-22 signaling contributes to AKI, we knocked out IL-22RA1 in renal epithelial cells by crossing IL-22RA1floxed mice with Six2-Cre mice. IL-22RA1 KO reduced DDR activation, cell death, and kidney injury. These data demonstrate that IL-22 promotes DDR activation in PTCs, switching pro-recovery DDR responses to a pro-cell death response and worsening AKI. Targeting IL-22 represents a novel therapeutic approach to prevent the negative consequences of the DDR activation while not interfering with the processes necessary for repair of damaged DNA.

14.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187751

RESUMO

Obesity is associated with chronic multi-system bioenergetic stress that may be improved by increasing the number of healthy mitochondria available across organ systems. However, treatments capable of increasing mitochondrial content are generally limited to endurance exercise training paradigms, which are not always sustainable long-term, let alone feasible for many patients with obesity. Recent studies have shown that local transfer of exogenous mitochondria from healthy donor tissues can improve bioenergetic outcomes and alleviate the effects of tissue injury in recipients with organ specific disease. Thus, the aim of this project was to determine the feasibility of systemic mitochondrial transfer for improving energy balance regulation in the setting of diet-induced obesity. We found that transplantation of mitochondria from lean mice into mice with diet-induced obesity attenuated adiposity gains by increasing energy expenditure and promoting the mobilization and oxidation of lipids. Additionally, mice that received exogenous mitochondria demonstrated improved glucose uptake, greater insulin responsiveness, and complete reversal of hepatic steatosis. These changes were, in part, driven by adaptations occurring in white adipose tissue. Together, these findings are proof-of-principle that mitochondrial transplantation is an effective therapeutic strategy for limiting the deleterious metabolic effects of diet-induced obesity in mice.

15.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778297

RESUMO

Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Tubular metabolism changes markedly following acute kidney injury (AKI), but which changes are adaptive versus maladaptive remain poorly understood. In publicly available data sets, we noticed a consistent downregulation of the mitochondrial pyruvate carrier (MPC) after AKI, which we experimentally confirmed. To test the functional consequences of MPC downregulation, we generated novel tubular epithelial cell-specific Mpc1 knockout (MPC TubKO) mice. 13C-glucose tracing, steady-state metabolomic profiling, and enzymatic activity assays revealed that MPC TubKO coordinately increased activities of the pentose phosphate pathway and the glutathione and thioredoxin oxidant defense systems. Following rhabdomyolysis-induced AKI, MPC TubKO decreased markers of kidney injury and oxidative damage and strikingly increased survival. Our findings suggest that decreased mitochondrial pyruvate uptake is a central adaptive response following AKI and raise the possibility of therapeutically modulating the MPC to attenuate AKI severity.

16.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798313

RESUMO

Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a known inhibitor of several cyclin dependent and cyclin-dependent kinase-like kinases that has been advanced into Phase II clinical trials. We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/ß affinity. As confirmation that our chemical probe is a high-quality tool to use in directed biological studies, we demonstrated inhibition of downstream CDKL5 and GSK3α/ß signaling and solved a co-crystal structure of analog 2 bound to CDKL5. A structurally similar analog ( 4 ) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/ß. Finally, we used our chemical probe pair ( 2 and 4 ) to demonstrate that inhibition of CDKL5 and/or GSK3α/ß promotes the survival of human motor neurons exposed to endoplasmic reticulum (ER) stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.

17.
ACS Chem Neurosci ; 14(9): 1672-1685, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37084253

RESUMO

Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a compound that has advanced to phase II clinical trials and is a known inhibitor of several cyclin-dependent kinases (CDKs) and cyclin-dependent kinase-like kinases (CDKLs). We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/ß affinity. We next demonstrated the inhibition of downstream CDKL5 and GSK3α/ß signaling and solved a co-crystal structure of analog 2 bound to human CDKL5. A structurally similar analog (4) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/ß, making it a suitable negative control. Finally, we used our chemical probe pair (2 and 4) to demonstrate that inhibition of CDKL5 and/or GSK3α/ß promotes the survival of human motor neurons exposed to endoplasmic reticulum stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.


Assuntos
Quinase 3 da Glicogênio Sintase , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Neurônios , Quinases Ciclina-Dependentes , Proteínas Serina-Treonina Quinases
18.
Nephron ; 146(3): 253-258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34883481

RESUMO

Acute kidney injury (AKI) is a common clinical disorder associated with decline in renal function because of ischemic and nephrotoxic insults. The pathophysiology of AKI involves multiple cellular mechanisms, such as kidney parenchymal cell (epithelial and endothelial) dysfunction and immune-cell infiltration. Mitochondrial injury which causes ATP depletion and triggers apoptosis and necrosis is at the heart of ischemia reperfusion injury (IRI). Pharmacological (SS-31 or MitoQ), cellular (dendritic cells or mesenchymal stem cells), or genetic strategies that either directly or indirectly preserve mitochondrial integrity and function have been shown to mitigate IRI-linked AKI in preclinical models. Interestingly, isolated mitochondria have been recently shown to be taken up by various mammalian cells resulting in incorporation of transplanted mitochondria into the endogenous mitochondrial network of recipient cells and contributing to protection from ischemic injury in various preclinical models of ischemia including the heart, liver, and kidneys. The mini review summarizes the current available therapeutic strategies that improve kidney function by targeting mitochondria health.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/terapia , Animais , Apoptose/genética , Feminino , Humanos , Isquemia , Rim/metabolismo , Masculino , Mamíferos , Mitocôndrias/metabolismo , Traumatismo por Reperfusão/complicações
19.
Blood Adv ; 6(17): 5049-5060, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35797240

RESUMO

Despite the clinical benefit associated with gilteritinib in relapsed/refractory acute myeloid leukemia (AML), most patients eventually develop resistance through unknown mechanisms. To delineate the mechanistic basis of resistance to gilteritinib, we performed targeted sequencing and scRNASeq on primary FLT3-ITD-mutated AML samples. Co-occurring mutations in RAS pathway genes were the most common genetic abnormalities, and unresponsiveness to gilteritinib was associated with increased expression of bone marrow-derived hematopoietic cytokines and chemokines. In particular, we found elevated expression of the TEK-family kinase, BMX, in gilteritinib-unresponsive patients pre- and post-treatment. BMX contributed to gilteritinib resistance in FLT3-mutant cell lines in a hypoxia-dependent manner by promoting pSTAT5 signaling, and these phenotypes could be reversed with pharmacological inhibition and genetic knockout. We also observed that inhibition of BMX in primary FLT3-mutated AML samples decreased chemokine secretion and enhanced the activity of gilteritinib. Collectively, these findings indicate a crucial role for microenvironment-mediated factors modulated by BMX in the escape from targeted therapy and have implications for the development of novel therapeutic interventions to restore sensitivity to gilteritinib.


Assuntos
Compostos de Anilina , Leucemia Mieloide Aguda , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas Tirosina Quinases/genética , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Microambiente Tumoral , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/uso terapêutico
20.
Front Immunol ; 13: 943554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958610

RESUMO

Asthma is phenotypically heterogeneous with several distinctive pathological mechanistic pathways. Previous studies indicate that neutrophilic asthma has a poor response to standard asthma treatments comprising inhaled corticosteroids. Therefore, it is important to identify critical factors that contribute to increased numbers of neutrophils in asthma patients whose symptoms are poorly controlled by conventional therapy. Leukocytes release chromatin fibers, referred to as extracellular traps (ETs) consisting of double-stranded (ds) DNA, histones, and granule contents. Excessive components of ETs contribute to the pathophysiology of asthma; however, it is unclear how ETs drive asthma phenotypes and whether they could be a potential therapeutic target. We employed a mouse model of severe asthma that recapitulates the intricate immune responses of neutrophilic and eosinophilic airway inflammation identified in patients with severe asthma. We used both a pharmacologic approach using miR-155 inhibitor-laden exosomes and genetic approaches using miR-155 knockout mice. Our data show that ETs are present in the bronchoalveolar lavage fluid of patients with mild asthma subjected to experimental subsegmental bronchoprovocation to an allergen and a severe asthma mouse model, which resembles the complex immune responses identified in severe human asthma. Furthermore, we show that miR-155 contributes to the extracellular release of dsDNA, which exacerbates allergic lung inflammation, and the inhibition of miR-155 results in therapeutic benefit in severe asthma mice. Our findings show that targeting dsDNA release represents an attractive therapeutic target for mitigating neutrophilic asthma phenotype, which is clinically refractory to standard care.


Assuntos
Asma , Eosinofilia , MicroRNAs , Pneumonia , Animais , Modelos Animais de Doenças , Granulócitos , Humanos , Camundongos , MicroRNAs/metabolismo , Neutrófilos , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA