Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 184(20): 5230-5246.e22, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551315

RESUMO

Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Dano ao DNA , Exodesoxirribonucleases/metabolismo , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Senescência Celular , Colágeno/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Membrana Nuclear/ultraestrutura , Proteólise , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell ; 173(5): 1150-1164.e14, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29706544

RESUMO

Tandem repeats (TRs) are generated by DNA replication errors and retain a high level of instability, which in principle would make them unsuitable for integration into gene regulatory networks. However, the appearance of DNA sequence motifs recognized by transcription factors may turn TRs into functional cis-regulatory elements, thus favoring their stabilization in genomes. Here, we show that, in human cells, the transcriptional repressor ZEB1, which promotes the maintenance of mesenchymal features largely by suppressing epithelial genes and microRNAs, occupies TRs harboring dozens of copies of its DNA-binding motif within genomic loci relevant for maintenance of epithelial identity. The deletion of one such TR caused quasi-mesenchymal cancer cells to reacquire epithelial features, partially recapitulating the effects of ZEB1 gene deletion. These data demonstrate that the high density of identical motifs in TRs can make them suitable platforms for recruitment of transcriptional repressors, thus promoting their exaptation into pre-existing cis-regulatory networks.


Assuntos
Sequências de Repetição em Tandem/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Adulto , Animais , Sequência de Bases , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Feminino , Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Mucosa Bucal/metabolismo , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/deficiência , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
3.
Nat Mater ; 22(5): 644-655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36581770

RESUMO

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Assuntos
Actinas , Neoplasias , DNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Citosol/metabolismo , Transdução de Sinais
4.
Cell ; 134(1): 135-47, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18614017

RESUMO

The small GTPases, Rab5 and Rac, are essential for endocytosis and actin remodeling, respectively. Coordination of these processes is critical to achieve spatial restriction of intracellular signaling, which is essential for a variety of polarized functions. Here, we show that clathrin- and Rab5-mediated endocytosis are required for the activation of Rac induced by motogenic stimuli. Rac activation occurs on early endosomes, where the RacGEF Tiam1 is also recruited. Subsequent recycling of Rac to the plasma membrane ensures localized signaling, leading to the formation of actin-based migratory protrusions. Thus, membrane trafficking of Rac is required for the spatial resolution of Rac-dependent motogenic signals. We further demonstrate that a Rab5-to-Rac circuitry controls the morphology of motile mammalian tumor cells and primordial germinal cells during zebrafish development, suggesting that this circuitry is relevant for the regulation of migratory programs in various cells, in both in vitro settings and whole organisms.


Assuntos
Movimento Celular , Endocitose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas rab5 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Clatrina/metabolismo , Embrião de Mamíferos/citologia , Embrião não Mamífero/citologia , Endossomos/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Camundongos , Peixe-Zebra
5.
Eur Phys J E Soft Matter ; 45(5): 50, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35604494

RESUMO

The connection between the properties of a cell tissue and those of the single constituent cells remains to be elucidated. At the purely mechanical level, the degree of rigidity of different cellular components, such as the nucleus and the cytoplasm, modulates the interplay between the cell inner processes and the external environment, while simultaneously mediating the mechanical interactions between neighboring cells. Being able to quantify the correlation between single-cell and tissue properties would improve our mechanobiological understanding of cell tissues. Here we develop a methodology to quantitatively extract a set of structural and motility parameters from the analysis of time-lapse movies of nuclei belonging to jammed and flocking cell monolayers. We then study in detail the correlation between the dynamical state of the tissue and the deformation of the nuclei. We observe that the nuclear deformation rate linearly correlates with the local divergence of the velocity field, which leads to a non-invasive estimate of the elastic modulus of the nucleus relative to the one of the cytoplasm. We also find that nuclei belonging to flocking monolayers, subjected to larger mechanical perturbations, are about two time stiffer than nuclei belonging to dynamically arrested monolayers, in agreement with atomic force microscopy results. Our results demonstrate a non-invasive route to the determination of nuclear relative stiffness for cells in a monolayer.


Assuntos
Núcleo Celular , Citoplasma , Módulo de Elasticidade , Microscopia de Força Atômica/métodos
6.
Soft Matter ; 17(13): 3550-3559, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33346771

RESUMO

The accurate quantification of cellular motility and of the structural changes occurring in multicellular aggregates is critical in describing and understanding key biological processes, such as wound repair, embryogenesis and cancer invasion. Current methods based on cell tracking or velocimetry either suffer from limited spatial resolution or are challenging and time-consuming, especially for three-dimensional (3D) cell assemblies. Here we propose a conceptually simple, robust and tracking-free approach for the quantification of the dynamical activity of cells via a two-step procedure. We first characterise the global features of the collective cell migration by registering the temporal stack of the acquired images. As a second step, a map of the local cell motility is obtained by performing a mean squared amplitude analysis of the intensity fluctuations occurring when two registered image frames acquired at different times are subtracted. We successfully apply our approach to cell monolayers undergoing a jamming transition, as well as to monolayers and 3D aggregates that exhibit a cooperative unjamming-via-flocking transition. Our approach is capable of disentangling very efficiently and of assessing accurately the global and local contributions to cell motility.


Assuntos
Imageamento Tridimensional , Movimento Celular , Movimento (Física)
7.
Nat Mater ; 18(11): 1252-1263, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31332337

RESUMO

During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effects with striking biophysical consequences. Specifically, unjamming in tumour spheroids is accompanied by persistent and coordinated rotations that progressively remodel the extracellular matrix, while simultaneously fluidizing cells at the periphery. This concurrent action results in collective invasion, supporting the concept that the endo-ERK1/2 pathway is a physicochemical switch to initiate collective invasion and dissemination of otherwise jammed carcinoma.


Assuntos
Diferenciação Celular , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/metabolismo , Humanos , Cinética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
8.
Immunity ; 35(3): 388-99, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21835647

RESUMO

Dendritic cells (DCs) flexibly adapt to different microenvironments by using diverse migration strategies that are ultimately dependent on the dynamics and structural organization of the actin cytoskeleton. Here, we have shown that DCs require the actin capping activity of the signaling adaptor Eps8 to polarize and to form elongated migratory protrusions. DCs from Eps8-deficient mice are impaired in directional and chemotactic migration in 3D in vitro and are delayed in reaching the draining lymph node (DLN) in vivo after inflammatory challenge. Hence, Eps8-deficient mice are unable to mount a contact hypersensitivity response. We have also shown that the DC migratory defect is cell autonomous and that Eps8 is required for the proper architectural organization of the actin meshwork and dynamics of cell protrusions. Yet, Eps8 is not necessary for antigen uptake, processing, and presentation. Thus, we have identified Eps8 as a unique actin capping protein specifically required for DC migration.


Assuntos
Proteínas de Capeamento de Actina/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas do Citoesqueleto/imunologia , Células Dendríticas/imunologia , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apresentação de Antígeno , Movimento Celular/imunologia , Proliferação de Células , Células Cultivadas , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Dermatite de Contato/imunologia , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/imunologia
11.
EMBO Rep ; 17(7): 1061-80, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27255086

RESUMO

The mechanisms of tumor cell dissemination and the contribution of membrane trafficking in this process are poorly understood. Through a functional siRNA screening of human RAB GTPases, we found that RAB2A, a protein essential for ER-to-Golgi transport, is critical in promoting proteolytic activity and 3D invasiveness of breast cancer (BC) cell lines. Remarkably, RAB2A is amplified and elevated in human BC and is a powerful and independent predictor of disease recurrence in BC patients. Mechanistically, RAB2A acts at two independent trafficking steps. Firstly, by interacting with VPS39, a key component of the late endosomal HOPS complex, it controls post-endocytic trafficking of membrane-bound MT1-MMP, an essential metalloprotease for matrix remodeling and invasion. Secondly, it further regulates Golgi transport of E-cadherin, ultimately controlling junctional stability, cell compaction, and tumor invasiveness. Thus, RAB2A is a novel trafficking determinant essential for regulation of a mesenchymal invasive program of BC dissemination.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Complexo de Golgi/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Endossomos/metabolismo , Exocitose , Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Inativação Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Invasividade Neoplásica , Prognóstico , Transporte Proteico , Proteólise , Recidiva , Proteínas Supressoras de Tumor/metabolismo , Proteínas rab de Ligação ao GTP/genética
12.
EMBO J ; 32(20): 2735-50, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24076653

RESUMO

Filopodia explore the environment, sensing soluble and mechanical cues during directional motility and tissue morphogenesis. How filopodia are initiated and spatially restricted to specific sites on the plasma membrane is still unclear. Here, we show that the membrane deforming and curvature sensing IRSp53 (Insulin Receptor Substrate of 53 kDa) protein slows down actin filament barbed end growth. This inhibition is relieved by CDC42 and counteracted by VASP, which also binds to IRSp53. The VASP:IRSp53 interaction is regulated by activated CDC42 and promotes high-density clustering of VASP, which is required for processive actin filament elongation. The interaction also mediates VASP recruitment to liposomes. In cells, IRSp53 and VASP accumulate at discrete foci at the leading edge, where filopodia are initiated. Genetic removal of IRSp53 impairs the formation of VASP foci, filopodia and chemotactic motility, while IRSp53 null mice display defective wound healing. Thus, IRSp53 dampens barbed end growth. CDC42 activation inhibits this activity and promotes IRSp53-dependent recruitment and clustering of VASP to drive actin assembly. These events result in spatial restriction of VASP filament elongation for initiation of filopodia during cell migration, invasion, and tissue repair.


Assuntos
Citoesqueleto de Actina/genética , Actinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Fosfoproteínas/metabolismo , Proteína cdc42 de Ligação ao GTP/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Moléculas de Adesão Celular/fisiologia , Células Cultivadas , Regulação para Baixo/genética , Embrião de Mamíferos , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/fisiologia , Ligação Proteica , Multimerização Proteica/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
13.
Biochem Biophys Res Commun ; 493(1): 528-533, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28867190

RESUMO

KRAS is the key mutated gene in pancreatic ductal adenocarcinoma (PDAC). Emerging evidence indicates that KRas modulates endocytic uptake. The present study aimed to explore the fate of early endosomal trafficking under the control of KRas expression in PDAC. Surprisingly, PANC-1 cells lacking KRas exhibited significantly enlarged early and late endosomes containing internalized dextran and epidermal growth factor. Endosome enlargement was accompanied by reduced endosomal degradation. Both KRas silencing and lysosomal blockade caused an upregulation of the master regulator of early endosome biogenesis, RAB5A, which is likely responsible for the expansion of the early endosomal compartment, because simultaneous KRAS/RAB5A knockdown abolished endosome enlargement. In contrast, early endosome shrinkage was seen in MIA PaCa-2 cells despite RAB5A upregulation, indicating that distinct KRas-modulated responses operate in different metabolic subtypes of PDAC. In conclusion, mutant KRAS promotes endosomal degradation in PDAC cell lines, which is impaired by KRAS silencing. Moreover, KRAS silencing activates RAB5A upregulation and drives PDAC subtype-dependent modulation of endosome trafficking.


Assuntos
Endossomos/metabolismo , Neoplasias Pancreáticas/metabolismo , Pinocitose , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Endossomos/patologia , Humanos , Neoplasias Pancreáticas/patologia , Transporte Proteico
14.
Cancer Cell ; 42(4): 662-681.e10, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518775

RESUMO

Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming. Ex vivo and in vitro evidence supports the occurrence of dynamic transitions among these variants in part influenced by extracellular matrix composition and stiffness and associated with local, specifically neural, invasion.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Membrana Basal/metabolismo , Sistema Nervoso
15.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747801

RESUMO

Tissue fluidification and collective motility are pivotal in regulating embryonic morphogenesis, wound healing and tumor metastasis. These processes frequently require that each cell constituent of a tissue coordinates its migration activity and directed motion through the oriented extension of lamellipodia cell protrusions, promoted by RAC1 activity. While the upstream RAC1 regulators in individual migratory cells or leader cells during invasion or wound healing are well characterized, how RAC1 is controlled in follower cells remains unknown. Here, we identify a novel MYO6-DOCK7 axis that is critical for spatially restriction of RAC1 activity in a planar polarized fashion in model tissue monolayers. The MYO6-DOCK7 axis specifically controls the extension of cryptic lamellipodia required to drive tissue fluidification and cooperative mode motion in otherwise solid and static carcinoma cell collectives. Highlights: Collective motion of jammed epithelia requires myosin VI activityThe MYO6-DOCK7 axis is critical to restrict the activity of RAC1 in a planar polarized fashionMYO6-DOCK7-RAC1 activation ensures long-range coordination of movements by promoting orientation and persistence of cryptic lamellipodiaMyosin VI overexpression is exploited by infiltrating breast cancer cells.

16.
Cell Rep ; 42(8): 113001, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590133

RESUMO

Tissue fluidification and collective motility are pivotal in regulating embryonic morphogenesis, wound healing, and tumor metastasis. These processes frequently require that each cell constituent of a tissue coordinates its migration activity and directed motion through the oriented extension of lamellipodium cell protrusions, promoted by RAC1 activity. While the upstream RAC1 regulators in individual migratory cells or leader cells during invasion or wound healing are well characterized, how RAC1 is controlled in follower cells remains unknown. Here, we identify a MYO6-DOCK7 axis essential for spatially restricting RAC1 activity in a planar polarized fashion in model tissue monolayers. The MYO6-DOCK7 axis specifically controls the extension of cryptic lamellipodia required to drive tissue fluidification and cooperative-mode motion in otherwise solid and static carcinoma cell collectives.


Assuntos
Mama , Pseudópodes , Cicatrização , Movimento (Física)
17.
Nature ; 429(6989): 309-14, 2004 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15152255

RESUMO

Rab5 is a small GTPase involved in the control of intracellular trafficking, both at the level of receptor endocytosis and endosomal dynamics. The finding that Rab5 can be activated by receptor tyrosine kinases (RTK) raised the question of whether it also participates in effector pathways emanating from these receptors. Here we show that Rab5 is indispensable for a form of RTK-induced actin remodelling, called circular ruffling. Three independent signals, originating from Rab5, phosphatidylinositol-3-OH kinase and Rac, respectively, are simultaneously required for the induction of circular ruffles. Rab5 signals to the actin cytoskeleton through RN-tre, a previously identified Rab5-specific GTPase-activating protein (GAP). Here we demonstrate that RN-tre has the dual function of Rab5-GAP and Rab5 effector. We also show that RN-tre is critical for macropinocytosis, a process previously connected to the formation of circular ruffles. Finally, RN-tre interacts with both F-actin and actinin-4, an F-actin bundling protein. We propose that RN-tre establishes a three-pronged connection with Rab5, F-actin and actinin-4. This may aid crosslinking of actin fibres into actin networks at the plasma membrane. Thus, we have shown that Rab5 is a signalling GTPase and have elucidated the major molecular elements of its downstream pathway.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Proteínas rab5 de Ligação ao GTP/metabolismo , Actinina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Fibroblastos , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Camundongos , Mutação/genética , Proteínas de Fusão Oncogênica/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ligação Proteica , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
18.
Nat Commun ; 11(1): 4828, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973141

RESUMO

ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Núcleo Celular/metabolismo , Estresse Mecânico , Citoesqueleto de Actina , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Encéfalo , Cromatina , Citoplasma , Citoesqueleto/metabolismo , Dano ao DNA , Camundongos Knockout , Metástase Neoplásica , Neurogênese , Membrana Nuclear/metabolismo
19.
Mol Biol Cell ; 17(9): 3729-44, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16775008

RESUMO

Receptor-linked class I phosphoinositide 3-kinases (PI3Ks) induce assembly of signal transduction complexes through protein-protein and protein-lipid interactions that mediate cell proliferation, survival, and migration. Although class II PI3Ks have the potential to make the same phosphoinositides as class I PI3Ks, their precise cellular role is currently unclear. In this report, we demonstrate that class II phosphoinositide 3-kinase C2beta (PI3KC2beta) associates with the Eps8/Abi1/Sos1 complex and is recruited to the EGF receptor as part of a multiprotein signaling complex also involving Shc and Grb2. Increased expression of PI3KC2beta stimulated Rac activity in A-431 epidermoid carcinoma cells, resulting in enhanced membrane ruffling and migration speed of the cells. Conversely, expression of dominant negative PI3KC2beta reduced Rac activity, membrane ruffling, and cell migration. Moreover, PI3KC2beta-overexpressing cells were protected from anoikis and displayed enhanced proliferation, independently of Rac function. Taken together, these findings suggest that PI3KC2beta regulates the migration and survival of human tumor cells by distinct molecular mechanisms.


Assuntos
Movimento Celular , Citoesqueleto/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Anoikis/fisiologia , Caderinas/metabolismo , Proliferação de Células , Classe II de Fosfatidilinositol 3-Quinases , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/citologia , Proteína Adaptadora GRB2/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteína SOS1/metabolismo , Proteínas Adaptadoras da Sinalização Shc , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Transfecção
20.
Philos Trans R Soc Lond B Biol Sci ; 374(1779): 20180224, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31431177

RESUMO

Selective evolutionary pressure shapes the processes and genes that enable cancer survival and expansion in a tumour-suppressive environment. A distinguishing lethal feature of malignant cancer is its dissemination and seeding of metastatic foci. A key requirement for this process is the acquisition of a migratory/invasive ability. However, how the migratory phenotype is selected for during the natural evolution of cancer and what advantage, if any, it might provide to the growing malignant cells remain open issues. In this opinion piece, we discuss three possible answers to these issues. We will examine lines of evidence from mathematical modelling of cancer evolution that indicate that migration is an intrinsic selectable property of malignant cells that directly impacts on growth dynamics and cancer geometry. Second, we will argue that migratory phenotypes can emerge as an adaptive response to unfavourable growth conditions and endow cells not only with the ability to move/invade, but also with specific metastatic traits, including drug resistance, self-renewal and survival. Finally, we will discuss the possibility that migratory phenotypes are coincidental events that emerge by happenstance in the natural evolution of cancer. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.


Assuntos
Evolução Biológica , Carcinogênese/metabolismo , Movimento Celular/genética , Neoplasias/metabolismo , Seleção Genética , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA