Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sensors (Basel) ; 23(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616975

RESUMO

Consideration of pelvic mobility when positioning implants for total hip arthroplasty (THA) has been shown to reduce the risk of complications such as dislocation, squeaking and excessive wear. We aim to test the repeatability of pelvic tilt measurements taken between three positions (standing, flexed-seated and step-up) by an inertial measurement unit (IMU) and hence, evaluate their reliability in screening for high pelvic mobility in patients undergoing THA. The repeated IMU measurements of pelvic tilt were analysed for consistency and compared with measures taken by x-ray analysis. Our study showed greater variation in measures taken by the IMU particularly in the flexed-seated position. The patient's pelvic tilt in this position negatively correlated with their mid-back angle, suggesting the posture of the patient is a source of variation in the flexed-seated position if not kept consistent during assessments. IMUs were overall able to produce accurate and reliable measurements of pelvic tilt; however, protocols will need to be adjusted to factor in a patient's mid-back angle when taking future readings.


Assuntos
Artroplastia de Quadril , Humanos , Artroplastia de Quadril/métodos , Articulação do Quadril , Reprodutibilidade dos Testes , Pelve/cirurgia , Postura
2.
Sensors (Basel) ; 20(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143034

RESUMO

There is increasing evidence that pelvic mobility is a critical factor to consider in implant alignment during total hip arthroplasty (THA). Here, we test the feasibility of using an inertial sensor fitted across the sacrum to measure change in pelvic tilt, and hence screen for patients with high pelvic mobility. Patients (n = 32, mean age: 57.4 years) due to receive THA surgery participated in the study. Measures of pelvic tilt were captured simultaneously using the device and radiograph in three functional positions: Standing, flexed-seated, and step-up. We found a strong correlation between the device and radiograph measures for the change in pelvic tilt measure from standing to flexed-seated position (R2 = 0.911); 75% of absolute errors were under 5 degrees. We demonstrated that the device can be used as a screening tool to rapidly identify patients who would benefit from more detailed surgical planning of implant positioning to reduce future risks of impingement and dislocation.


Assuntos
Artroplastia de Quadril , Pelve/anatomia & histologia , Amplitude de Movimento Articular , Humanos , Pessoa de Meia-Idade , Pelve/cirurgia , Postura , Coluna Vertebral
3.
Comput Biol Med ; 169: 107799, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104517

RESUMO

BACKGROUND: While modern hip replacement planning relies on hip motion simulation (HMS), it lacks the capability to include soft-tissues and ligaments restraints on computed bony range of motion (BROM), often leading to an overestimation of the in-vivo functional range of motion (FROM). Furthermore, there is a lack of literature on BROM assessment in relation to FROM. Therefore, the study aimed to assess computed BROM using in-vitro cadaver-derived FROM measurements, registered to a CT-based in-house HMS, and to further investigate the effect of functional and anatomical hip joint centres (FHJC and AHJC) on BROM. METHOD: Seven limiting and three non-limiting circumducted passive FROM of four cadaver hips were measured using optical coordinate measuring machine with reference spheres (RSs) affixed to the pelvis and the femur, following CT-scan of the specimen. The RSs' centres were used to register the measured FROM in HMS, enabling its virtual recreation to compute corresponding BROM by detecting nearest bony impingement. FHJC, estimated from non-limiting FROM, was compared with AHJC to examine their positional differences and effect on BROM. RESULTS: Differences in BROM and FROM were minimal in deep flexion (3.0° ± 4.1°) and maximum internal rotation (IR) at deep flexion (3.0° ± 2.9°), but substantially greater in extension (53.2° ± 9.5°). Bony impingement was observed during flexion, and IR at deep flexion for two hips. The average positional difference between FHJC and AHJC was 3.1 ± 1.2 mm, resulting in BROM differences of 1°-13° across four motions. CONCLUSIONS: The study provided greater insight into the applicability and reliability of computed BROM in pre-surgical planning.


Assuntos
Articulação do Quadril , Humanos , Reprodutibilidade dos Testes , Articulação do Quadril/cirurgia , Amplitude de Movimento Articular , Simulação por Computador , Cadáver
4.
Comput Methods Programs Biomed ; 222: 106937, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35752118

RESUMO

BACKGROUND AND OBJECTIVE: Pre-operative surgical planning using computer simulation is increasingly standard practice before Total Hip Arthroplasty (THA), in order to determine the optimal implant positions, and thereby minimise post-operative complications such as dislocation, wear and leg length discrepancy. One of the limitations of current methods, however, is the lack of information on the subject-specific reference range of motion (ROM) that could be used as targets for surgical planning. Only a limited number of hip motions are considered, which are neither subject-specific, nor representative of all the hip motions associated with all the activities of daily livings (ADLs). In this paper, therefore, a method was developed to calculate subject-specific representative bony range of motion (B-ROM) that would cover all the possible joint motions and presented in terms of pure joint motions. METHODS: Only 3D bone geometries of femur and pelvis, constructed from personalised CT scan, were used as inputs for healthy hip joint whereas implant geometries and their positions on native bone geometries were required for planned treatment side or replaced side. Hip joint motion simulation was carried out using six different Tait-Bryan intrinsic rotation sequences of three pure joint motions - flexion-extension, abduction-adduction and internal-external rotation, and B-ROM was then identified for any of these six different sequences which caused earliest feasible impingement. The B-ROM could be used as a list of ROM data points or visualised as multiple 2D surface plots or a 3D envelop. Using the developed method, the B-ROM of a contralateral healthy hip joint of a patient can be used to define the subject-specific target ROM values to inform the surgical planning of the arthritic hip side so that the patient's natural ROM could be restored as closely as possible by the planned implant placements. This was demonstrated with a clinical verification study using 'non-dislocating' and 'dislocating' THA patients. RESULTS: The results supported the study hypothesis that the percentage of intersected volume of the healthy and replaced side B-ROM was higher for the 'Non-Dislocator' patient (95%) compared to 'Dislocator' (78%). Also, the results showed that the only one sequence (first flexion-extension, then abduction-adduction and finally internal-external rotation) was not adequate to identify all the possible limiting B-ROM, and therefore, all the six rotation sequences should be considered. CONCLUSIONS: The method encompasses every potential ADL, and as a result, more comprehensive surgical planning is possible, as the implant positions can be optimised in order to maximise impingement-free ROM, and consequently minimise clinical complications.


Assuntos
Artroplastia de Quadril , Simulação por Computador , Fêmur/cirurgia , Articulação do Quadril/cirurgia , Humanos , Amplitude de Movimento Articular
5.
JMIR Med Inform ; 9(2): e22164, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33565992

RESUMO

BACKGROUND: Myocardial infarction (MI; location and extent of infarction) can be determined by late enhancement cardiac magnetic resonance (CMR) imaging, which requires the injection of a potentially harmful gadolinium-based contrast agent (GBCA). Alternatively, emerging research in the area of myocardial strain has shown potential to identify MI using strain values. OBJECTIVE: This study aims to identify the location of MI by developing an applied algorithmic method of circumferential strain (CS) values, which are derived through a novel hierarchical template matching (HTM) method. METHODS: HTM-based CS H-spread from end-diastole to end-systole was used to develop an applied method. Grid-tagging magnetic resonance imaging was used to calculate strain values in the left ventricular (LV) myocardium, followed by the 16-segment American Heart Association model. The data set was used with k-fold cross-validation to estimate the percentage reduction of H-spread among infarcted and noninfarcted LV segments. A total of 43 participants (38 MI and 5 healthy) who underwent CMR imaging were retrospectively selected. Infarcted segments detected by using this method were validated by comparison with late enhancement CMR, and the diagnostic performance of the applied algorithmic method was evaluated with a receiver operating characteristic curve test. RESULTS: The H-spread of the CS was reduced in infarcted segments compared with noninfarcted segments of the LV. The reductions were 30% in basal segments, 30% in midventricular segments, and 20% in apical LV segments. The diagnostic accuracy of detection, using the reported method, was represented by area under the curve values, which were 0.85, 0.82, and 0.87 for basal, midventricular, and apical slices, respectively, demonstrating good agreement with the late-gadolinium enhancement-based detections. CONCLUSIONS: The proposed applied algorithmic method has the potential to accurately identify the location of infarcted LV segments without the administration of late-gadolinium enhancement. Such an approach adds the potential to safely identify MI, potentially reduce patient scanning time, and extend the utility of CMR in patients who are contraindicated for the use of GBCA.

6.
Ann Biomed Eng ; 48(4): 1354-1367, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31970546

RESUMO

Bone-to-bone impingement (BTBI) and implant-to-bone impingement (ITBI) risk assessment is generally performed intra-operatively by surgeons, which is entirely subjective and qualitative, and therefore, lead to sub-optimal results and recurrent dislocation in some cases. Therefore, a method was developed for identifying subject-specific BTBI and ITBI, and subsequently, visualising the impingement area on native bone anatomy to highlight where prominent bone should be resected. Activity definitions and subject-specific bone geometries, with planned implants were used as inputs for the method. The ITBI and BTBI boundary and area were automatically identified using ray intersection and region growing algorithm respectively to retain the same 'conical clearance angle' obtained to avoid prosthetic impingement (PI). The ITBI and BTBI area was then presented with different colours to highlight the risk of impingement, and importance of resection. A clinical study with five patients after 2 years of THA was performed to validate the method. The results supported the study hypothesis, in that the predicted highest risk area (red coloured zone) was completely/majorly resected during the surgery. Therefore, this method could potentially be used to examine the effect of different pre-operative plans and hip motions on BTBI, ITBI, and PI, and to guide bony resection during THA surgery.


Assuntos
Artroplastia de Quadril , Impacto Femoroacetabular , Idoso , Feminino , Fêmur , Articulação do Quadril , Prótese de Quadril , Humanos , Masculino , Pessoa de Meia-Idade , Pelve
7.
Ann Biomed Eng ; 47(7): 1642-1656, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30972601

RESUMO

Prosthetic impingement (PI) following total hip arthroplasty (THA), which arises due to the undesirable relative motion of the implants, results in adverse outcomes. Predicting PI through 3D graphical representation is difficult to comprehend when all activities are combined for different implant positions. Therefore, the aim of the paper was to translate this 3D information into a 2D graphical representation for improved understanding of the patient's hip motion. The method used planned implanted geometry, positioned onto native bone anatomy, and activity definitions as inputs to construct the 2D polar plot from 3D hip motion in four steps. Three case studies were performed to highlight its potential use in (a) combining different activities in a single plot, (b) visualising the effect of different cup positions and (c) pelvic tilt on PI. A clinical study with 20 'Non-Dislocators' and 20 'Dislocators' patients after 2 years of THA was performed to validate the method. The results supported the study hypothesis, in that the incidence of PI was always higher in the 'Dislocators' compared to the 'Non-Dislocators' group. The proposed 2D graphical representation could assist in subject-specific THA planning by visualising the effect of different activities, implant positions, pelvic tilt and related aspects on PI.


Assuntos
Artroplastia de Quadril , Articulação do Quadril/fisiopatologia , Prótese de Quadril , Idoso , Feminino , Articulação do Quadril/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Modelagem Computacional Específica para o Paciente
8.
Sci Rep ; 9(1): 12450, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462651

RESUMO

Myocardial tracking and strain estimation can non-invasively assess cardiac functioning using subject-specific MRI. As the left-ventricle does not have a uniform shape and functioning from base to apex, the development of 3D MRI has provided opportunities for simultaneous 3D tracking, and 3D strain estimation. We have extended a Local Weighted Mean (LWM) transformation function for 3D, and incorporated in a Hierarchical Template Matching model to solve 3D myocardial tracking and strain estimation problem. The LWM does not need to solve a large system of equations, provides smooth displacement of myocardial points, and adapt local geometric differences in images. Hence, 3D myocardial tracking can be performed with 1.49 mm median error, and without large error outliers. The maximum error of tracking is up to 24% reduced compared to benchmark methods. Moreover, the estimated strain can be insightful to improve 3D imaging protocols, and the computer code of LWM could also be useful for geo-spatial and manufacturing image analysis researchers.


Assuntos
Algoritmos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Modelos Cardiovasculares , Miocárdio , Humanos
9.
Med Biol Eng Comput ; 56(9): 1615-1631, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29479659

RESUMO

Identification of in vivo passive biomechanical properties of healthy human myocardium from regular clinical data is essential for subject-specific modelling of left ventricle (LV). In this work, myocardium was defined by Holzapfel-Ogden constitutive law. Therefore, the objectives of the study were (a) to estimate the ranges of the constitutive parameters for healthy human myocardium using non-invasive routine clinical data, and (b) to investigate the effect of geometry, LV end-diastolic pressure (EDP) and fibre orientations on estimated values. In order to avoid invasive measurements and additional scans, LV cavity volume, measured from routine MRI, and empirical pressure-normalised-volume relation (Klotz-curve) were used as clinical data. Finite element modelling, response surface method and genetic algorithm were used to inversely estimate the constitutive parameters. Due to the ill-posed nature of the inverse optimisation problem, the myocardial properties was extracted by identifying the ranges of the parameters, instead of finding unique values. Additional sensitivity studies were carried out to identify the effect of LV EDP, fibre orientation and geometry on estimated parameters. Although uniqueness of the solution cannot be achieved, the normal ranges of the parameters produced similar mechanical responses within the physiological ranges. These information could be used in future computational studies for designing heart failure treatments. Graphical abstract.


Assuntos
Miocárdio/metabolismo , Animais , Fenômenos Biomecânicos , Pressão Sanguínea/fisiologia , Diástole/fisiologia , Análise de Elementos Finitos , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imagem Cinética por Ressonância Magnética , Estresse Mecânico , Sus scrofa
10.
Sci Rep ; 8(1): 4475, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540762

RESUMO

Cardiovascular disease diagnosis and prognosis can be improved by measuring patient-specific in-vivo local myocardial strain using Magnetic Resonance Imaging. Local myocardial strain can be determined by tracking the movement of sample muscles points during cardiac cycle using cardiac motion estimation model. The tracking accuracy of the benchmark Free Form Deformation (FFD) model is greatly affected due to its dependency on tunable parameters and regularisation function. Therefore, Hierarchical Template Matching (HTM) model, which is independent of tunable parameters, regularisation function, and image-specific features, is proposed in this article. HTM has dense and uniform points correspondence that provides HTM with the ability to estimate local muscular deformation with a promising accuracy of less than half a millimetre of cardiac wall muscle. As a result, the muscles tracking accuracy has been significantly (p < 0.001) improved (30%) compared to the benchmark model. Such merits of HTM provide reliably calculated clinical measures which can be incorporated into the decision-making process of cardiac disease diagnosis and prognosis.


Assuntos
Coração/fisiologia , Modelos Teóricos , Movimento (Física) , Algoritmos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/fisiopatologia , Coração/fisiopatologia , Humanos
11.
Sci Rep ; 7(1): 7238, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775337

RESUMO

Impingement is a major source of dislocation and aseptic loosening in total hip arthroplasty (THA). We compared impingement free range of motion (ROM) using a novel computer navigated femur first approach to conventional THA. In addition, impingement between genders was also explored. In a retrospective analysis of 121 THA patients, subject-specific post-operative ROM was simulated using post-operative 3D-CT data, and compared with the benchmark ROM, essential for activities of daily living. Three parameters were defined to express both implant-to-implant (ITI) and bone-to-bone (BTB) impingement - coverage percentage, third angle, and impingement severity. Although coverage percentage was similar between the navigated and conventional group for both ITI (p = 0.69) and BTB (p = 0.82) impingement, third angle was significantly reduced in the navigation group for both ITI (p = 0.02) and BTB (p = 0.05) impingement. Impingement severity for both ITI (p = 0.01) and BTB (p = 0.05) was significantly decreased in the navigation group compared to the conventional. Impingement severity in men was considerably higher compared to women for both ITI (p = 0.002) and BTB (p = 0.02). Navigation guided femur first THA is able to improve alignment of ROM axis, and consequently, to reduce impingement in THA. Men seem to be more prone to impingement than women.


Assuntos
Artroplastia de Quadril , Impacto Femoroacetabular/diagnóstico , Fêmur , Amplitude de Movimento Articular , Idoso , Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/métodos , Feminino , Impacto Femoroacetabular/etiologia , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Projetos de Pesquisa , Índice de Gravidade de Doença , Cirurgia Assistida por Computador
12.
J Biomech ; 52: 95-105, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28065473

RESUMO

Left-ventricular (LV) remodelling, associated with diastolic heart failure, is driven by an increase in myocardial stress. Therefore, normalisation of LV wall stress is the cornerstone of many therapeutic treatments. However, information regarding such regional stress-strain for human LV is still limited. Thus, the objectives of our study were to determine local diastolic stress-strain field in healthy LVs, and consequently, to identify the regional variations amongst them due to geometric heterogeneity. Effects of LV base movement on diastolic model predictions, which were ignored in the literature, were further explored. Personalised finite-element modelling of five normal human bi-ventricles was carried out using subject-specific myocardium properties. Model prediction was validated individually through comparison with end-diastolic volume and a new shape-volume based measurement of LV cavity, extracted from magnetic resonance imaging. Results indicated that incorporation of LV base movement improved the model predictions (shape-volume relevancy of LV cavity), and therefore, it should be considered in future studies. The LV endocardium always experienced higher fibre stress compared to the epicardium for all five subjects. The LV wall near base experienced higher stress compared to equatorial and apical locations. The lateral LV wall underwent greater stress distribution (fibre and sheet stress) compared to other three regions. In addition, normal ranges of different stress-strain components in different regions of LV wall were reported for five healthy ventricles. This information could be used as targets for future computational studies to optimise diastolic heart failure treatments or design new therapeutic interventions/devices.


Assuntos
Diástole , Ventrículos do Coração/anatomia & histologia , Modelos Cardiovasculares , Movimento , Função Ventricular Esquerda , Ventrículos do Coração/patologia , Humanos , Estresse Mecânico , Remodelação Ventricular
13.
J Biomech ; 48(4): 604-612, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25596634

RESUMO

Majority of heart failure patients who suffer from diastolic dysfunction retain normal systolic pump action. The dysfunction remodels the myocardial fibre structure of left-ventricle (LV), changing its regular diastolic behaviour. Existing LV diastolic models ignored the effects of right-ventricular (RV) deformation, resulting in inaccurate strain analysis of LV wall during diastole. This paper, for the first time, proposes a numerical approach to investigate the effect of fibre-angle distribution and RV deformation on LV diastolic mechanics. A finite element modelling of LV passive inflation was carried out, using structure-based orthotropic constitutive law. Rule-based fibre architecture was assigned on a bi-ventricular (BV) geometry constructed from non-invasive imaging of human heart. The effect of RV deformation on LV diastolic mechanics was investigated by comparing the results predicted by BV and single LV model constructed from the same image data. Results indicated an important influence of RV deformation which led to additional LV passive inflation and increase of average fibre and sheet stress-strain in LV wall during diastole. Sensitivity of LV passive mechanics to the changes in the fibre distribution was also examined. The study revealed that LV diastolic volume increased when fibres were aligned more towards LV longitudinal axis. Changes in fibre angle distribution significantly altered fibre stress-strain distribution of LV wall. The simulation results strongly suggest that patient-specific fibre structure and RV deformation play very important roles in LV diastolic mechanics and should be accounted for in computational modelling for improved understanding of the LV mechanics under normal and pathological conditions.


Assuntos
Simulação por Computador , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Modelos Cardiovasculares , Miocárdio/patologia , Fenômenos Biomecânicos/fisiologia , Diástole/fisiologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Modelos Teóricos , Sístole/fisiologia , Remodelação Ventricular/fisiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-26737787

RESUMO

Fibre orientation of myocardial wall plays a significant role in ventricular wall stress, which is assumed to be responsible for many cardiac mechanics, including ventricular remodelling, associated with heart failure. Previous studies, conducted to identify the effects of fibre orientation on left -ventricle (LV) diastolic mechanics, used only animal's myocardium properties (no human data) and therefore, may not apply for predicting human cardiac mechanics. In the present study, computational modelling of LV diastole was carried out to investigate the effects of fibre orientation on LV end diastolic pressure volume relation (EDPVR) and wall stress distribution using subject-specific in vivo passive properties of human myocardium for two human hearts. Results indicated that LV inflation increased when fibres were aligned more towards LV longitudinal axis and the effect was more notable when the fibre angle was higher in endocardium than epicardium wall. Changes in fibre angle distribution considerably altered fibre stress distribution of LV wall and the changes were significant in anterior and lateral regions of equatorial and apical locations. Furthermore, the regions of high fibre stress from midwall to endocardium were gradually confined towards endocardium with the decrease in fibre angle. Such information will be useful for future studies/diagnoses of LV mechanics in normal and pathological conditions.


Assuntos
Diástole/fisiologia , Ventrículos do Coração/anatomia & histologia , Coração , Modelos Cardiovasculares , Função Ventricular/fisiologia , Simulação por Computador , Coração/anatomia & histologia , Coração/parasitologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA