Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurol Neurosurg Psychiatry ; 92(3): 295-302, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33184094

RESUMO

OBJECTIVE: To establish a rigorous, expert-led, evidence-based approach to the evaluation of licensed drugs for repurposing and testing in clinical trials of people with progressive multiple sclerosis (MS). METHODS: We long-listed licensed drugs with evidence of human safety, blood-brain barrier penetrance and demonstrable efficacy in at least one animal model, or mechanistic target, agreed by a panel of experts and people with MS to be relevant to the pathogenesis of progression. We systematically reviewed the preclinical and clinical literature for each compound, condensed this into a database of summary documents and short-listed drugs by scoring each one of them. Drugs were evaluated for immediate use in a clinical trial, and our selection was scrutinised by a final independent expert review. RESULTS: From a short list of 55 treatments, we recommended four treatments for immediate testing in progressive MS: R-α-lipoic acid, metformin, the combination treatment of R-α-lipoic acid and metformin, and niacin. We also prioritised clemastine, lamotrigine, oxcarbazepine, nimodipine and flunarizine. CONCLUSIONS: We report a standardised approach for the identification of candidate drugs for repurposing in the treatment of progressive MS.


Assuntos
Reposicionamento de Medicamentos , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Animais , Avaliação de Medicamentos , Humanos
2.
Proc Natl Acad Sci U S A ; 115(44): 11322-11326, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322908

RESUMO

Frequency analysis of sound by the cochlea is the most fundamental property of the auditory system. Despite its importance, the resolution of this frequency analysis in humans remains controversial. The controversy persists because the methods used to estimate tuning in humans are indirect and have not all been independently validated in other species. Some data suggest that human cochlear tuning is considerably sharper than that of laboratory animals, while others suggest little or no difference between species. We show here in a single species (ferret) that behavioral estimates of tuning bandwidths obtained using perceptual masking methods, and objective estimates obtained using otoacoustic emissions, both also employed in humans, agree closely with direct physiological measurements from single auditory-nerve fibers. Combined with human behavioral data, this outcome indicates that the frequency analysis performed by the human cochlea is of significantly higher resolution than found in common laboratory animals. This finding raises important questions about the evolutionary origins of human cochlear tuning, its role in the emergence of speech communication, and the mechanisms underlying our ability to separate and process natural sounds in complex acoustic environments.


Assuntos
Cóclea/fisiologia , Mamíferos/fisiologia , Estimulação Acústica/métodos , Acústica , Animais , Limiar Auditivo/fisiologia , Audição/fisiologia , Humanos , Emissões Otoacústicas Espontâneas/fisiologia , Mascaramento Perceptivo/fisiologia , Som
3.
Eur J Neurosci ; 52(9): 4057-4080, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32686192

RESUMO

Previous work has led to the hypothesis that, during the production of noise-induced tinnitus, higher levels of nitric oxide (NO), in the ventral cochlear nucleus (VCN), increase the gain applied to a reduced input from the cochlea. To test this hypothesis, we noise-exposed 26 guinea pigs, identified evidence of tinnitus in 12 of them and then compared the effects of an iontophoretically applied NO donor or production inhibitor on VCN single unit activity. We confirmed that the mean driven firing rate for the tinnitus and control groups was the same while it had fallen in the non-tinnitus group. By contrast, the mean spontaneous rate had increased for the tinnitus group relative to the control group, while it remained the same for the non-tinnitus group. A greater proportion of units responded to exogenously applied NO in the tinnitus (56%) and non-tinnitus groups (71%) than a control population (24%). In the tinnitus group, endogenous NO facilitated the driven firing rate in 37% (7/19) of neurons and appeared to bring the mean driven rate back up to control levels by a mechanism involving N-methyl-D-aspartic acid (NMDA) receptors. By contrast, in the non-tinnitus group, endogenous NO only facilitated the driven firing rate in 5% (1/22) of neurons and there was no facilitation of driven rate in the control group. The effects of endogenous NO on spontaneous activity were unclear. These results suggest that NO is involved in increasing the gain applied to driven activity, but other factors are also involved in the increase in spontaneous activity.


Assuntos
Núcleo Coclear , Perda Auditiva Provocada por Ruído , Zumbido , Animais , Cobaias , Óxido Nítrico , Ruído
4.
Eur J Neurosci ; 51(4): 963-983, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31494975

RESUMO

The gaseous free radical, nitric oxide (NO) acts as a ubiquitous neuromodulator, contributing to synaptic plasticity in a complex way that can involve either long term potentiation or depression. It is produced by neuronal nitric oxide synthase (nNOS) which is presynaptically expressed and also located postsynaptically in the membrane and cytoplasm of a subpopulation of each major neuronal type in the ventral cochlear nucleus (VCN). We have used iontophoresis in vivo to study the effect of the NOS inhibitor L-NAME (L-NG-Nitroarginine methyl ester) and the NO donors SIN-1 (3-Morpholinosydnonimine hydrochloride) and SNOG (S-Nitrosoglutathione) on VCN units under urethane anaesthesia. Collectively, both donors produced increases and decreases in driven and spontaneous firing rates of some neurones. Inhibition of endogenous NO production with L-NAME evoked a consistent increase in driven firing rates in 18% of units without much effect on spontaneous rate. This reduction of gain produced by endogenous NO was mirrored when studying the effect of L-NAME on NMDA(N-Methyl-D-aspartic acid)-evoked excitation, with 30% of units showing enhanced NMDA-evoked excitation during L-NAME application (reduced NO levels). Approximately 25% of neurones contain nNOS and the NO produced can modulate the firing rate of the main principal cells: medium stellates (choppers), large stellates (onset responses) and bushy cells (primary-like responses). The main endogenous role of NO seems to be to partly suppress driven firing rates associated with NMDA channel activity but there is scope for it to increase neural gain if there were a pathological increase in its production following hearing loss.


Assuntos
Núcleo Coclear , Óxido Nítrico , Animais , Inibidores Enzimáticos/farmacologia , Cobaias , NG-Nitroarginina Metil Éster/farmacologia , Neurônios , Doadores de Óxido Nítrico
5.
Br J Cancer ; 121(2): 101-108, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31231121

RESUMO

Our understanding of cancer biology has increased substantially over the past 30 years. Despite this, and an increasing pharmaceutical company expenditure on research and development, the approval of novel oncology drugs during the past decade continues to be modest. In addition, the attrition of agents during clinical development remains high. This attrition can be attributed, at least in part, to the clinical development being underpinned by the demonstration of predictable efficacy in experimental models of human tumours. This review will focus on the range of models available for the discovery and development of anticancer drugs, from traditional subcutaneous injection of tumour cell lines to mice genetically engineered to spontaneously give rise to tumours. It will consider the best time to use the models, along with practical applications and shortcomings. Finally, and most importantly, it will describe how these models reflect the underlying cancer biology and how well they predict efficacy in the clinic. Developing a line of sight to the clinic early in a drug discovery project provides clear benefit, as it helps to guide the selection of appropriate preclinical models and facilitates the investigation of relevant biomarkers.


Assuntos
Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Descoberta de Drogas , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Microsc Microanal ; 24(6): 667-675, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30588911

RESUMO

Crystals within volcanic rocks record geochemical and textural signatures during magmatic evolution before eruption. Clues to this magmatic history can be examined using crystal size distribution (CSD) studies. The analysis of CSDs is a standard petrological tool, but laborious due to manual hand-drawing of crystal margins. The trainable Weka segmentation (TWS) plugin in ImageJ is a promising alternative. It uses machine learning and image segmentation to classify an image. We recorded back-scattered electron (BSE) images of three volcanic samples with different crystallinity (35, 50 and ≥85 vol. %), using scanning electron microscopes (SEM) of variable image resolutions, which we then tested using TWS. Crystal measurements obtained from the automatically segmented images are compared with those of the manual segmentation. Samples up to 50 vol. % crystallinity are successfully segmented using TWS. Segmentation at significantly higher crystallinities fails, as crystal boundaries cannot be distinguished. Accuracy performance tests for the TWS classifiers yield high F-scores (>0.930), hence, TWS is a successful and fast computing tool for outlining crystals from BSE images of glassy rocks. Finally, reliable CSD's can be derived using a low-cost desktop SEM, paving the way for a wide range of research to take advantage of this new petrological method.

7.
Eur J Neurosci ; 45(3): 398-409, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27862478

RESUMO

Tinnitus chronically affects between 10-15% of the population but, despite its prevalence, the underlying mechanisms are still not properly understood. One experimental model involves administration of high doses of sodium salicylate, as this is known to reliably induce tinnitus in both humans and animals. Guinea pigs were implanted with chronic electrocorticography (ECoG) electrode arrays, with silver-ball electrodes placed on the dura over left and right auditory cortex. Two more electrodes were positioned over the cerebellum to monitor auditory brainstem responses (ABRs). We recorded resting-state and auditory evoked neural activity from awake animals before and 2 h following salicylate administration (350 mg/kg; i.p.). Large increases in click-evoked responses (> 100%) were evident across the whole auditory cortex, despite significant reductions in wave I ABR amplitudes (in response to 20 kHz tones), which are indicative of auditory nerve activity. In the same animals, significant decreases in 6-10 Hz spontaneous oscillations (alpha waves) were evident over dorsocaudal auditory cortex. We were also able to demonstrate for the first time that cortical evoked potentials can be inhibited by a preceding gap in background noise [gap-induced pre-pulse inhibition (PPI)], in a similar fashion to the gap-induced inhibition of the acoustic startle reflex that is used as a behavioural test for tinnitus. Furthermore, 2 h following salicylate administration, we observed significant deficits in PPI of cortical responses that were closely aligned with significant deficits in behavioural responses to the same stimuli. Together, these data are suggestive of neural correlates of tinnitus and oversensitivity to sound (hyperacusis).


Assuntos
Ritmo alfa , Córtex Auditivo/fisiologia , Zumbido/fisiopatologia , Animais , Córtex Auditivo/efeitos dos fármacos , Limiar Auditivo , Nervo Coclear/fisiologia , Potenciais Evocados Auditivos , Feminino , Cobaias , Masculino , Inibição Neural , Reflexo Acústico , Reflexo de Sobressalto , Salicilato de Sódio/toxicidade , Zumbido/etiologia , Vigília
8.
J Neurosci ; 35(1): 209-20, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25568115

RESUMO

The binaural masking level difference (BMLD) is a phenomenon whereby a signal that is identical at each ear (S0), masked by a noise that is identical at each ear (N0), can be made 12-15 dB more detectable by inverting the waveform of either the tone or noise at one ear (Sπ, Nπ). Single-cell responses to BMLD stimuli were measured in the primary auditory cortex of urethane-anesthetized guinea pigs. Firing rate was measured as a function of signal level of a 500 Hz pure tone masked by low-passed white noise. Responses were similar to those reported in the inferior colliculus. At low signal levels, the response was dominated by the masker. At higher signal levels, firing rate either increased or decreased. Detection thresholds for each neuron were determined using signal detection theory. Few neurons yielded measurable detection thresholds for all stimulus conditions, with a wide range in thresholds. However, across the entire population, the lowest thresholds were consistent with human psychophysical BMLDs. As in the inferior colliculus, the shape of the firing-rate versus signal-level functions depended on the neurons' selectivity for interaural time difference. Our results suggest that, in cortex, BMLD signals are detected from increases or decreases in the firing rate, consistent with predictions of cross-correlation models of binaural processing and that the psychophysical detection threshold is based on the lowest neural thresholds across the population.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Limiar Auditivo/fisiologia , Localização de Som/fisiologia , Potenciais de Ação/fisiologia , Animais , Feminino , Cobaias , Masculino
9.
J Neurophysiol ; 113(6): 1819-30, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25540219

RESUMO

Responses of neurons to binaural, harmonic complex stimuli in urethane-anesthetized guinea pig inferior colliculus (IC) are reported. To assess the binaural integration of harmonicity cues for sound segregation and grouping, responses were measured to harmonic complexes with different fundamental frequencies presented to each ear. Simultaneously gated harmonic stimuli with fundamental frequencies of 125 Hz and 145 Hz were presented to the left and right ears, respectively, and recordings made from 96 neurons with characteristic frequencies >2 kHz in the central nucleus of the IC. Of these units, 70 responded continuously throughout the stimulus and were excited by the stimulus at the contralateral ear. The stimulus at the ipsilateral ear excited (EE: 14%; 10/70), inhibited (EI: 33%; 23/70), or had no significant effect (EO: 53%; 37/70), defined by the effect on firing rate. The neurons phase locked to the temporal envelope at each ear to varying degrees depending on signal level. Many of the cells (predominantly EO) were dominated by the response to the contralateral stimulus. Another group (predominantly EI) synchronized to the contralateral stimulus and were suppressed by the ipsilateral stimulus in a phasic manner. A third group synchronized to the stimuli at both ears (predominantly EE). Finally, a group only responded when the waveform peaks from each ear coincided. We conclude that these groups of neurons represent different "streams" of information but exhibit modifications of the response rather than encoding a feature of the stimulus, like pitch.


Assuntos
Percepção Auditiva , Colículos Inferiores/fisiologia , Animais , Potenciais Evocados Auditivos , Feminino , Cobaias , Colículos Inferiores/citologia , Masculino , Neurônios/fisiologia
10.
Eur J Neurosci ; 40(2): 2427-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24702651

RESUMO

Animal models of tinnitus allow us to study the relationship between changes in neural activity and the tinnitus percept. Here, guinea pigs were subjected to unilateral noise trauma and tested behaviourally for tinnitus 8 weeks later. By comparing animals with tinnitus with those without, all of which were noise-exposed, we were able to identify changes unique to the tinnitus group. Three physiological markers known to change following noise exposure were examined: spontaneous firing rates (SFRs) and burst firing in the inferior colliculus (IC), evoked auditory brainstem responses (ABRs), and the number of neurons in the cochlear nucleus containing nitric oxide synthase (NOS). We obtained behavioural evidence of tinnitus in 12 of 16 (75%) animals. Both SFRs and incidences of burst firing were elevated in the IC of all noise-exposed animals, but there were no differences between tinnitus and no-tinnitus animals. There were significant decreases in ipsilateral ABR latencies in tinnitus animals, contrary to what might be expected with a small hearing loss. Furthermore, there was an ipsilateral-contralateral asymmetry in NOS staining in the ventral cochlear nucleus (VCN) that was only apparent in tinnitus animals. Tinnitus animals had a significantly greater number of NOS-containing neurons on the noise-exposed side, whereas no-tinnitus animals did not. These data suggest that measuring NOS in the VCN and recording ABRs supplement behavioural methods for confirming tinnitus in animals, and that nitric oxide is involved in plastic neural changes associated with tinnitus.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Zumbido/fisiopatologia , Animais , Núcleo Coclear/citologia , Núcleo Coclear/metabolismo , Núcleo Coclear/fisiopatologia , Feminino , Cobaias , Perda Auditiva Provocada por Ruído/complicações , Colículos Inferiores/citologia , Colículos Inferiores/metabolismo , Colículos Inferiores/fisiopatologia , Masculino , Neurônios/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Tempo de Reação , Zumbido/etiologia
11.
Br J Clin Pharmacol ; 78(1): 33-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24251808

RESUMO

Multiple sclerosis (MS) is a neurodegenerative disease with a major inflammatory component that constitutes the most common progressive and disabling neurological condition in young adults. Injectable immunomodulatory medicines such as interferon drugs and glatiramer acetate have dominated the MS market for over the past two decades but this situation is set to change. This is because of: (i) patent expirations, (ii) the introduction of natalizumab, which targets the interaction between leukocytes and the blood-CNS barrier, (iii) the launch of three oral immunomodulatory drugs (fingolimod, dimethyl fumarate and teriflunomide), with another (laquinimod) under regulatory review and (iv) a number of immunomodulatory monoclonal antibodies (alemtuzumab, daclizumab and ocrelizumab) about to enter the market. Current and emerging medicines are reviewed and their impact on people with MS considered.


Assuntos
Terapia de Alvo Molecular , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Anticorpos Monoclonais/uso terapêutico , Drogas em Investigação/uso terapêutico , Humanos , Imunossupressores/uso terapêutico
12.
J Neurosci ; 32(49): 17762-74, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23223296

RESUMO

The ability to detect unexpected sounds within the environment is an important function of the auditory system, as a rapid response may be required for the organism to survive. Previous studies found a decreased response to repetitive stimuli (standard), but an increased response to rare or less frequent sounds (deviant) in individual neurons in the inferior colliculus (IC) and at higher levels. This phenomenon, known as stimulus-specific adaptation (SSA) has been suggested to underpin change detection. Currently, it is not known how SSA varies within a single neuron receptive field, i.e., it is unclear whether SSA is a unique property of the neuron or a feature that is frequency and/or intensity dependent. In the present experiments, we used the common SSA index (CSI) to quantify and compare the degree of SSA under different stimulation conditions in the IC of the rat. We calculated the CSI at different intensities and frequencies for each individual IC neuron to map the neuronal CSI within the receptive field. Our data show that high SSA is biased toward the high-frequency and low-intensity regions of the receptive field. We also find that SSA is better represented in the earliest portions of the response, and there is a positive correlation between the width of the frequency response area of the neuron and the maximum level of SSA. The present data suggest that SSA in the IC is not mediated by the intrinsic membrane properties of the neurons and instead might be related to an excitatory and/or inhibitory input segregation.


Assuntos
Adaptação Fisiológica/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/psicologia , Colículos Inferiores/fisiologia , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Animais , Mapeamento Encefálico/métodos , Feminino , Colículos Inferiores/anatomia & histologia , Neurônios/fisiologia , Ratos , Ratos Long-Evans
13.
J Physiol ; 591(16): 4003-25, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23753527

RESUMO

A differential response to sound frequency is a fundamental property of auditory neurons. Frequency analysis in the cochlea gives rise to V-shaped tuning functions in auditory nerve fibres, but by the level of the inferior colliculus (IC), the midbrain nucleus of the auditory pathway, neuronal receptive fields display diverse shapes that reflect the interplay of excitation and inhibition. The origin and nature of these frequency receptive field types is still open to question. One proposed hypothesis is that the frequency response class of any given neuron in the IC is predominantly inherited from one of three major afferent pathways projecting to the IC, giving rise to three distinct receptive field classes. Here, we applied subjective classification, principal component analysis, cluster analysis, and other objective statistical measures, to a large population (2826) of frequency response areas from single neurons recorded in the IC of the anaesthetised guinea pig. Subjectively, we recognised seven frequency response classes (V-shaped, non-monotonic Vs, narrow, closed, tilt down, tilt up and double-peaked), that were represented at all frequencies. We could identify similar classes using our objective classification tools. Importantly, however, many neurons exhibited properties intermediate between these classes, and none of the objective methods used here showed evidence of discrete response classes. Thus receptive field shapes in the IC form continua rather than discrete classes, a finding consistent with the integration of afferent inputs in the generation of frequency response areas. The frequency disposition of inhibition in the response areas of some neurons suggests that across-frequency inputs originating at or below the level of the IC are involved in their generation.


Assuntos
Vias Auditivas/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Cobaias , Neurônios/classificação
14.
Brain Sci ; 13(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38137063

RESUMO

Basic work into neuroplasticity mechanisms in both invertebrate and vertebrate brains, followed by the development of the first animal model of tinnitus, and coupled with clinical studies of tinnitus, meant that, by 1990, Jastreboff [...].

15.
J Neurosci ; 31(25): 9192-204, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21697370

RESUMO

First spike latency has been suggested as a source of the information required for fast discrimination tasks. However, the accuracy of such a mechanism has not been analyzed rigorously. Here, we investigate the utility of first spike latency for encoding information about the location of a sound source, based on the responses of inferior colliculus (IC) neurons in the guinea pig to interaural phase differences (IPDs). First spike latencies of many cells in the guinea pig IC show unimodal tuning to stimulus IPD. We investigated the discrimination accuracy of a simple latency code that estimates stimulus IPD from the preferred IPD of the single cell that fired first. Surprisingly, despite being based on only a single spike, the accuracy of the latency code is comparable to that of a conventional rate code computed over the entire response. We show that spontaneous firing limits the capacity of the latency code to accumulate information from large neural populations. This detrimental effect can be overcome by generalizing the latency code to estimate the stimulus IPD from the preferred IPDs of the population of cells that fired the first n spikes. In addition, we show that a good estimate of the neural response time to the stimulus, which can be obtained from the responses of the cells whose response latency is invariant to stimulus identity, limits the detrimental effect of spontaneous firing. Thus, a latency code may provide great improvement in response speed at a small cost to the accuracy of the decision.


Assuntos
Potenciais de Ação/fisiologia , Cobaias/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Localização de Som/fisiologia , Transmissão Sináptica/fisiologia , Animais , Feminino , Masculino
16.
Eur J Neurosci ; 36(4): 2428-39, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22694786

RESUMO

The ferret (Mustela putorius) is a medium-sized, carnivorous mammal with good low-frequency hearing; it is relatively easy to train, and there is therefore a good body of behavioural data detailing its detection thresholds and localization abilities. However, despite extensive studies of the physiology of the central nervous system of the ferret, even extending to the prefrontal cortex, little is known of the functioning of the auditory periphery. Here, we provide an insight into this peripheral function by detailing responses of single auditory nerve fibres. Our expectation was that the ferret auditory nerve responsiveness would be similar that of its near relative, the cat. However, by comparing a range of variables (the frequency tuning, the variation of rate-level functions with spontaneous rate, and the high-frequency cut-off of phase locking) across several species, we show that the auditory nerve (and hence cochlea) in the ferret is more similar to that of the guinea-pig and chinchilla than to that of the cat. Animal models of hearing are often chosen on the basis of the similarity of their audiogram to that of the human, particularly in the low-frequency region. We show here that whereas the ferret hears well at low frequencies, this is likely to occur via fibres with higher characteristic frequencies. These qualitative differences in response characteristics in auditory nerve fibres are important in interpreting data across all of auditory science, as it has been argued recently that tuning in animals is broader than in humans.


Assuntos
Nervo Coclear/fisiologia , Fibras Nervosas/fisiologia , Estimulação Acústica , Animais , Potenciais Evocados Auditivos , Furões , Especificidade da Espécie
17.
Sci Total Environ ; 808: 152126, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34863745

RESUMO

Knowing how landscape structure affects the provision of ecosystem services (ES) is an important first step toward better landscape planning. Because landscape structure is often heterogenous across space, modelling the relationship between landscape structure and the provision of ES must account for spatial non-stationarity. This paper examines the relationship between landscape structure and the provision of ES using a hill country and steep-land case farm in New Zealand. Indicators derived from land cover and topographical data such as Largest Patch Index (LPI), Contrast Class Edge (CCE), Edge Density (ED), and Terrain slope (SLOPE) were used to examine the landscape's structure and pattern. Measures of pasture productivity, soil erosion control, and water supply were derived with InVEST tools and spatial analysis in a GIS. Multiscale Geographically Weighted Regression (MGWR) was used to evaluate the relationship between indicators of landscape structure and the provisioning of ES. Other regression models, including Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR), were carried out to evaluate the performance of MGWR. Results showed that landscape patterns significantly affect the supply of all mapped ES, and this varies across the landscape, dependent on the pattern of topographical features and land cover pattern and structure. MWGR outperformed other OLS and GWR in terms of explanatory power of the ES determinants and had a better ability to deal with the presence of spatial autocorrelation. Spatially and quantitatively detailed variations of the relationship between landscape structure and the provision of ES provide a scientific basis to inform the design of sustainable multifunctional landscapes. Information derived from this analysis can be used for spatial planning of farmed landscapes to promote multiple ES which meet multiple sustainable development objectives.


Assuntos
Ecossistema , Regressão Espacial , Conservação dos Recursos Naturais , Nova Zelândia , Análise Espacial
18.
Front Neuroanat ; 16: 1034264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439196

RESUMO

Minicolumns are thought to be a fundamental neural unit in the neocortex and their replication may have formed the basis of the rapid cortical expansion that occurred during primate evolution. We sought evidence of minicolumns in the primary visual cortex (V-1) of three great apes, three rodents and representatives from three other mammalian orders: Eulipotyphla (European hedgehog), Artiodactyla (domestic pig) and Carnivora (ferret). Minicolumns, identified by the presence of a long bundle of radial, myelinated fibers stretching from layer III to the white matter of silver-stained sections, were found in the human, chimpanzee, gorilla and guinea pig V-1. Shorter bundles confined to one or two layers were found in the other species but represent modules rather than minicolumns. The inter-bundle distance, and hence density of minicolumns, varied systematically both within a local area that might represent a hypercolumn but also across the whole visual field. The distance between all bundles had a similar range for human, chimpanzee, gorilla, ferret and guinea pig: most bundles were 20-45 µm apart. By contrast, the space between bundles was greater for the hedgehog and pig (20-140 µm). The mean density of minicolumns was greater in tangential sections of the gorilla and chimpanzee (1,243-1,287 bundles/mm2) than in human (314-422 bundles/mm2) or guinea pig (643 bundles/mm2). The minicolumnar bundles did not form a hexagonal lattice but were arranged in thin curving and branched bands separated by thicker bands of neuropil/somata. Estimates of the total number of modules/minicolumns within V-1 were strongly correlated with visual acuity.

19.
Eur J Neurosci ; 33(7): 1240-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21226777

RESUMO

We investigated how physiologically observed forward suppression interacts with stimulus frequency in neuronal responses in the guinea pig auditory cortex. The temporal order and frequency proximity of sounds influence both their perception and neuronal responses. Psychophysically, preceding sounds (conditioners) can make successive sounds (probes) harder to hear. These effects are larger when the two sounds are spectrally similar. Physiological forward suppression is usually maximal for conditioner tones near to a unit's characteristic frequency (CF), the frequency to which a neuron is most sensitive. However, in most physiological studies, the frequency of the probe tone and CF are identical, so the role of unit CF and probe frequency cannot be distinguished. Here, we systemically varied the frequency of the probe tone, and found that the tuning of suppression was often more closely related to the frequency of the probe tone than to the unit's CF, i.e. suppressed tuning was specific to probe frequency. This relationship was maintained for all measured gaps between the conditioner and the probe tones. However, when the probe frequency and CF were similar, CF tended to determine suppressed tuning. In addition, the bandwidth of suppression was slightly wider for off-CF probes. Changes in tuning were also reflected in the firing rate in response to probe tones, which was maximally reduced when probe and conditioner tones were matched in frequency. These data are consistent with the idea that cortical neurons receive convergent inputs with a wide range of tuning properties that can adapt independently.


Assuntos
Córtex Auditivo/fisiologia , Células Receptoras Sensoriais/fisiologia , Som , Estimulação Acústica/métodos , Animais , Córtex Auditivo/citologia , Eletrofisiologia , Cobaias , Células Receptoras Sensoriais/citologia
20.
Int J Audiol ; 50(5): 303-12, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21388238

RESUMO

OBJECTIVE: We explored the relationship between audiogram shape and tinnitus pitch to answer questions arising from neurophysiological models of tinnitus: 'Is the dominant tinnitus pitch associated with the edge of hearing loss?' and 'Is such a relationship more robust in people with narrow tinnitus bandwidth or steep sloping hearing loss?' DESIGN: A broken-stick fitting objectively quantified slope, degree and edge of hearing loss up to 16 kHz. Tinnitus pitch was characterized up to 12 kHz. We used correlation and multiple regression analyses for examining relationships with many potentially predictive audiometric variables. STUDY SAMPLE: 67 people with chronic bilateral tinnitus (43 men and 24 women, aged from 22 to 81 years). RESULTS: In this ample of 67 subjects correlation failed to reveal any relationship between the tinnitus pitch and the edge frequency. The tinnitus pitch generally fell within the area of hearing loss. The pitch of the tinnitus in a subset of subjects with a narrow tinnitus bandwidth (n = 23) was associated with the audiometric edge. CONCLUSIONS: Our findings concerning subjects with narrow tinnitus bandwidth suggest that this can be used as an a priori inclusion criterion. A large group of such subjects should be tested to confirm these results.


Assuntos
Audiometria/estatística & dados numéricos , Perda Auditiva/diagnóstico , Zumbido/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Perda Auditiva/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Zumbido/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA