RESUMO
Tetrahydroisoquinoline (THIQ) alkaloids and their derivatives have a structural similarity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a well-known neurotoxin. THIQs seem to present a broad range of actions in the brain, critically dependent on their catechol moieties and metabolism. These properties make it reasonable to assume that an acute or chronic exposure to some THIQs might lead to neurodegenerative diseases including essential tremor (ET). We developed a method to search for precursor carbonyl compounds produced during the Maillard reaction in overcooked meats to study their reactivity with endogenous amines and identify the reaction products. Then, we predicted in silico their pharmacokinetic and toxicological properties toward the central nervous system. Finally, their possible neurological effects on a novel in vitro 3D neurosphere model were assessed. The obtained data indicate that meat is an alkaloid precursor, and we identified the alkaloid 1-benzyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol (1-benz-6,7-diol THIQ) as the condensation product of phenylacetaldehyde with dopamine; in silico study of 1-benz-6,7-diol-THIQ reveals modulation of dopamine receptor D1 and D2; and in vitro study of 1-benz-6,7-diol-THIQ for cytotoxicity and oxidative stress induction does not show any difference after 24 h contact for all tested concentrations. To conclude, our in vitro data do not support an eventual neurotoxic effect for 1-benz-6,7-diol-THIQ.
Assuntos
Alcaloides , Tetra-Hidroisoquinolinas , Tetra-Hidroisoquinolinas/toxicidade , Dopamina/metabolismo , Alcaloides/toxicidade , Encéfalo/metabolismoRESUMO
Unfortunately the name of Jean Jacques Vanden Eynde was missing as co-author of this contribution. The correct list of authors is: Ioan O. Neaga, Stephanie Hambye, Ede Bodoki, Claudio Palmieri, Jean Jacques Vanden Eynde, Eugénie Ansseau, Alexandra Belayew, Radu Oprean, Bertrand Blankert.
RESUMO
Myotonic dystrophy type 1 (DM1) is an autosomal dominantly inherited degenerative disease with a slow progression. At the present, there is no commercially available treatment, but sustained effort is currently undertaken for the development of a promising lead compound. In the present paper we report the development of a fast, versatile, and cost-effective affinity capillary electrophoresis (ACE) method for the screening and identification of potential drug candidates targeting pathological ARN probes relevant for DM1. The affinity studies were conducted in physiologically relevant conditions using 50 mM HEPES buffer (pH 7.4) in a fused silica capillary dynamically coated with poly(ethylene oxide), by testing a library of potential ligands against (CUG)50 RNA as target probe with a total run time of 4-5 h/ligand. For the most promising ligands, their affinity parameters were assessed and some results formerly reported on the affinity of pentamidine (PTMD) and neomycin against CUG repeats were confirmed. To the best of the authors' knowledge, the estimated binding stoichiometry for some of the tested compounds (i.e., ~ 121:1 for PTMD against the tested RNA probe) is reported for the first time. Additionally, the potential of a novel pentamidine like compound, namely 1,2-ethane bis-1-amino-4-benzamidine (EBAB) with much lower in vivo toxicity than its parent compound has also been confirmed studying its effect on a live cell model by fluorescence microscopy. Further tests, such as the evaluation of the rescue in the mis-splicing of the involved genes, can be performed to corroborate the potential therapeutic value of EBAB in DM1 treatment. Graphical abstract á .
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Eletroforese Capilar/métodos , Distrofia Miotônica/tratamento farmacológico , Benzamidinas/química , Benzamidinas/farmacologia , Avaliação Pré-Clínica de Medicamentos/economia , Eletroforese Capilar/economia , Células HeLa , Humanos , Ligantes , Pentamidina/química , Pentamidina/farmacologia , Motivos de Ligação ao RNA/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologiaRESUMO
UNLABELLED: Nonalcoholic fatty liver disease (NAFLD) may lead to hepatic fibrosis. Dietary habits affect gut microbiota composition, whereas endotoxins produced by Gram-negative bacteria stimulate hepatic fibrogenesis. However, the mechanisms of action and the potential effect of microbiota in the liver are still unknown. Thus, we sought to analyze whether microbiota may interfere with liver fibrogenesis. Mice fed control (CTRL) or high-fat diet (HFD) were subjected to either bile duct ligation (BDL) or CCl4 treatment. Previously gut-sterilized mice were subjected to microbiota transplantation by oral gavage of cecum content obtained from donor CTRL- or HFD-treated mice. Fibrosis, intestinal permeability, bacterial translocation, and serum endotoxemia were measured. Inflammasome components were evaluated in gut and liver. Microbiota composition (dysbiosis) was evaluated by Pyrosequencing. Fibrosis degree was increased in HFD+BDL versus CTRL+BDL mice, whereas no differences were observed between CTRL+CCl4 and HFD+CCl4 mice. Culture of mesenteric lymph nodes showed higher density of infection in HFD+BDL mice versus CTRL+BDL mice, suggesting higher bacterial translocation rate. Pyrosequencing revealed an increase in percentage of Gram-negative versus Gram-postive bacteria, a reduced ratio between Bacteroidetes and Firmicutes, as well as a dramatic increase of Gram-negative Proteobacteria in HFD+BDL versus CTRL+BDL mice. Inflammasome expression was increased in liver of fibrotic mice, but significantly reduced in gut. Furthermore, microbiota transplantation revealed more liver damage in chimeric mice fed CTRL diet, but receiving the microbiota of HFD-treated mice; liver damage was further enhanced by transplantation of selected Gram-negative bacteria obtained from cecum content of HFD+BDL-treated mice. CONCLUSIONS: Dietary habits, by increasing the percentage of intestinal Gram-negative endotoxin producers, may accelerate liver fibrogenesis, introducing dysbiosis as a cofactor contributing to chronic liver injury in NAFLD.
Assuntos
Disbiose/complicações , Cirrose Hepática Experimental/etiologia , Animais , Translocação Bacteriana , Tetracloreto de Carbono/toxicidade , Dieta Hiperlipídica , Trato Gastrointestinal/microbiologia , Inflamassomos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologiaRESUMO
OBJECTIVES: To investigate the distribution of erythromycin, tetracycline and chloramphenicol resistance mechanisms and determinants and the relevant genetic environments and elements in viridans group streptococci (VGS). METHODS: A total of 263 VGS collected from routine throat swabs in 2010-12 and identified to the species level were studied. Antibiotic resistance determinants and the relevant genetic contexts and elements were determined using amplification and sequencing assays and restriction analysis. RESULTS: The investigation provided original information on the distribution of resistance mechanisms, determinants and genetic elements in VGS. Erythromycin-resistant isolates totalled 148 (56.3%; 37 belonging to the cMLS phenotype and 111 belonging to the M phenotype); there were 72 (27.4%) and 7 (2.7%) tetracycline- and chloramphenicol-resistant isolates, respectively. A number of variants of known genetic contexts and elements carrying determinants of resistance to these antibiotics were detected, including the mega element, Φ10394.4, Tn2009, Tn2010, the IQ element, Tn917, Tn3872, Tn6002, Tn916, Tn5801, a tet(O) fragment from ICE2096-RD.2 and ICESp23FST81. CONCLUSIONS: These findings shed new light on the distribution of antibiotic resistance mechanisms and determinants and their genetic environments in VGS, for which very few such data are currently available. The high frequency and broad variety of such elements supports the notion that VGS may be important reservoirs of resistance genes for the more pathogenic streptococci. The high rates of macrolide resistance confirm the persistence of a marked prevalence of resistant VGS in Europe, where macrolide resistance is, conversely, declining among the major streptococcal pathogens.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Estreptococos Viridans/efeitos dos fármacos , Estreptococos Viridans/genética , Cloranfenicol/farmacologia , DNA Bacteriano/química , DNA Bacteriano/genética , Eritromicina/farmacologia , Humanos , Itália , Dados de Sequência Molecular , Faringe/microbiologia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Infecções Estreptocócicas/microbiologia , Tetraciclina/farmacologia , Estreptococos Viridans/isolamento & purificaçãoRESUMO
OBJECTIVES: The recently documented presence of almost identical, small, non-self-transmissible, erm(T)-carrying plasmids in clonally unrelated erythromycin-resistant isolates of Streptococcus pyogenes and Streptococcus agalactiae suggests that these plasmids somehow circulate in the streptococcal population. The objective of this study was to characterize the erm(T)-carrying genetic element in a clinical isolate of Streptococcus dysgalactiae subsp. equisimilis (Sde5580) and to provide a possible explanation for the spread of erm(T)-carrying plasmids in streptococci. METHODS: The erm(T)-carrying element of Sde5580 was investigated by plasmid analysis, PCR experiments and sequencing. Transfer and retransfer experiments were performed using S. pyogenes, S. agalactiae and Streptococcus suis strains as recipients and by selection in the presence of suitable drug concentrations. Transconjugants were analysed by SmaI-macrorestriction analysis. Genetic studies also included PCR-restriction fragment length polymorphism analysis using HindIII endonuclease. RESULTS: Sde5580 contained two mobile genetic elements: a 4950 bp erm(T)-carrying plasmid (p5580) almost identical to the non-self-transmissible erm(T)-carrying plasmids of S. pyogenes and S. agalactiae mentioned above, and an ~63 kb cadC/cadA-carrying integrative and conjugative element (ICESde3396-like) of the ICESa2603 family. p5580 was transferable at high frequency to the recipients of all three species through in trans mobilization by the coresident ICESde3396-like element. p5580 and ICESde3396-like were able to be transferred either separately or together. CONCLUSIONS: This is the first evidence of horizontal transfer of an erm(T)-carrying plasmid between streptococci. In trans mobilization by coresident ICEs may be one mechanism for the spread of erm(T)-carrying plasmids in the streptococcal population.
Assuntos
Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Metiltransferases/genética , Plasmídeos/genética , Streptococcus/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases/genética , Eritromicina/farmacologia , Humanos , Metiltransferases/metabolismo , Dados de Sequência Molecular , Plasmídeos/efeitos dos fármacos , Plasmídeos/metabolismo , Especificidade da Espécie , Streptococcus/metabolismo , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Streptococcus suis/genética , Streptococcus suis/metabolismoRESUMO
The macrolide-aminoglycoside-streptothricin (MAS) element, an â¼4.2-kb insertion containing erm(B) and aphA3 resistance determinants, distinguishes Streptococcus pneumoniae transposon Tn1545/Tn6003 from Tn6002. Here, it is shown to be an unstable genetic element that, although it lacks recombinase genes, can exploit long, erm(B)-containing direct repeats acting as att sites for spontaneous excision that may result in loss. Consequent to excision, which is RecA independent, Tn1545/Tn6003 changes to Tn6002. In pneumococcal populations harboring Tn1545/Tn6003, the latter appears to coexist with Tn6002.
Assuntos
Elementos de DNA Transponíveis , DNA Circular , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Streptococcus pneumoniae/genética , Instabilidade Genômica , Humanos , Mutagênese InsercionalRESUMO
Mosaic tetracycline resistance determinants are a recently discovered class of hybrids of ribosomal protection tet genes. They may show different patterns of mosaicism, but their final size has remained unaltered. Initially thought to be confined to a small group of anaerobic bacteria, mosaic tet genes were then found to be widespread. In the genus Streptococcus, a mosaic tet gene [tet(O/W/32/O)] was first discovered in Streptococcus suis, an emerging drug-resistant pig and human pathogen. In this study, we report the molecular characterization of a tet(O/W/32/O) gene-carrying mobile element from an S. suis isolate. tet(O/W/32/O) was detected, in tandem with tet(40), in a circular 14,741-bp genetic element (39.1% G+C; 17 open reading frames [ORFs] identified). The novel element, which we designated 15K, also carried the macrolide resistance determinant erm(B) and an aminoglycoside resistance four-gene cluster including aadE (streptomycin) and aphA (kanamycin). 15K appeared to be an unstable genetic element that, in the absence of recombinases, is capable of undergoing spontaneous excision under standard growth conditions. In the integrated form, 15K was found inside a 54,879-bp integrative and conjugative element (ICE) (50.5% G+C; 55 ORFs), which we designated ICESsu32457. An â¼1.3-kb segment that apparently served as the att site for excision of the unstable 15K element was identified. The novel ICE was transferable at high frequency to recipients from pathogenic Streptococcus species (S. suis, Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae), suggesting that the multiresistance 15K element can successfully spread within streptococcal populations.
Assuntos
DNA Bacteriano , DNA Circular , Sequências Repetitivas Dispersas , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Streptococcus/genética , Doenças dos Suínos/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Farmacorresistência Bacteriana Múltipla/genética , Transferência Genética Horizontal , Loci Gênicos , Humanos , Família Multigênica , Fases de Leitura Aberta , Isoformas de Proteínas/genética , Infecções Estreptocócicas/microbiologia , Streptococcus suis/isolamento & purificação , SuínosRESUMO
The genetic support for tet(W), an emerging tetracycline resistance determinant, was studied in two strains of Streptococcus suis, SsCA and SsUD, both isolated in Italy from patients with meningitis. Two completely different tet(W)-carrying genetic elements, sharing only a tet(W)-containing segment barely larger than the gene, were found in the two strains. The one from strain SsCA was nontransferable, and aside from an erm(B)-containing insertion, it closely resembled a genomic island recently described in an S. suis Chinese human isolate in sequence, organization, and chromosomal location. The tet(W)-carrying genetic element from strain SsUD was transferable (at a low frequency) and, though apparently noninducible following mitomycin C treatment, displayed a typical phage organization and was named ΦSsUD.1. Its full sequence was determined (60,711 bp), the highest BLASTN score being Streptococcus pyogenes Φm46.1. ΦSsUD.1 exhibited a unique combination of antibiotic and heavy metal resistance genes. Besides tet(W), it contained a MAS (macrolide-aminoglycoside-streptothricin) fragment with an erm(B) gene having a deleted leader peptide and a cadC/cadA cadmium efflux cassette. The MAS fragment closely resembled the one recently described in pneumococcal transposons Tn6003 and Tn1545. These resistance genes found in the ΦSsUD.1 phage scaffold differed from, but were in the same position as, cargo genes carried by other streptococcal phages. The chromosome integration site of ΦSsUD.1 was at the 3' end of a conserved tRNA uracil methyltransferase (rum) gene. This site, known to be an insertional hot spot for mobile elements in S. pyogenes, might play a similar role in S. suis.
Assuntos
Antibacterianos/farmacologia , Elementos de DNA Transponíveis/genética , Genes Bacterianos , Infecções Estreptocócicas/microbiologia , Streptococcus suis/efeitos dos fármacos , Resistência a Tetraciclina/genética , Proteínas de Bactérias/genética , Conjugação Genética , DNA Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Análise de Sequência de DNA , Streptococcus suis/genética , Streptococcus suis/isolamento & purificação , Tetraciclina/farmacologiaAssuntos
DNA Circular , Farmacorresistência Bacteriana/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Adaptação Fisiológica/genética , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Recombinação Genética , Sequências de Repetição em TandemAssuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Carbonatos/farmacologia , Durapatita/farmacologia , Nanopartículas/metabolismo , Streptococcus mitis/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Compostos de Zinco/farmacologia , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Streptococcus mitis/fisiologia , Streptococcus mutans/fisiologiaRESUMO
This study aimed to retrospectively identify 22Streptococcus bovis clinical strains based on the new taxonomy, as well as to investigate their antibiotic-resistance and clonality. Strains were identified by Phoenix100 system, 16S rRNA sequencing, and two MALDI-TOF MS platforms (Bruker Biotyper, Vitek MS). Antibiotic resistance was determined both phenotypically and genotypically, and clonality was assessed by PFGE. Most of strains (63.6%) were isolated from urine, and diabetes was the most common underlying disease (31.8%). Phoenix100 system revealed all strains belonged to biotype II, and 16S rRNA sequencing identified all strains as S. gallolyticus subsp pasteurianus (SGSP). Although both MALDI-TOF MS systems correctly identified isolates to the species level, only Bruker Biotyper accurately identified to the subspecies level. Erythromycin-resistant strains (31.8%) were also clindamycin-resistant and positive for erm(B). Strains resistant to tetracycline (68.2%) were also resistant to erythromycin. PFGE showed high genetic variability identifying 17 different pulsotypes, most of which single.
Assuntos
Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Streptococcus gallolyticus/classificação , Streptococcus gallolyticus/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , DNA Ribossômico/química , DNA Ribossômico/genética , Farmacorresistência Bacteriana , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Estudos Retrospectivos , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Streptococcus gallolyticus/efeitos dos fármacosRESUMO
Integrative conjugative elements (ICEs) are mobile genetic elements that reside in the chromosome but retain the ability to undergo excision and to transfer by conjugation. Genes involved in drug resistance, virulence, or niche adaptation are often found among backbone genes as cargo DNA. We recently characterized in Streptococcus suis an ICE (ICESsu32457) carrying resistance genes [tet(O/W/32/O), tet(40), erm(B), aphA, and aadE] in the 15K unstable genetic element, which is flanked by two â¼1.3kb direct repeats. Remarkably, â¼1.3-kb sequences are conserved in ICESa2603 of Streptococcus agalactiae 2603V/R, which carry heavy metal resistance genes cadC/cadA and mer. In matings between S. suis 32457 (donor) and S. agalactiae 2603V/R (recipient), transconjugants were obtained. PCR experiments, PFGE, and sequence analysis of transconjugants demonstrated a tandem array between ICESsu32457 and ICESa2603. Matings between tandem array-containing S. agalactiae 2603V/R (donor) and Streptococcus pyogenes RF12 (recipient) yielded a single transconjugant containing a hybrid ICE, here named ICESa2603/ICESsu32457. The hybrid formed by recombination of the left â¼1.3-kb sequence of ICESsu32457 and the â¼1.3-kb sequence of ICESa2603. Interestingly, the hybrid ICE was transferable between S. pyogenes strains, thus demonstrating that it behaves as a conventional ICE. These findings suggest that both tandem arrays and hybrid ICEs may contribute to the evolution of antibiotic resistance in streptococci, creating novel mobile elements capable of disseminating new combinations of antibiotic resistance genes.
Assuntos
Conjugação Genética/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Sequências Repetitivas Dispersas/genética , Streptococcus agalactiae/genética , Streptococcus suis/genética , Animais , Sequência de Bases , Eletroforese em Gel de Campo Pulsado , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Streptococcus pyogenes/genéticaRESUMO
A recent increase in virulence of pathogenic Streptococcus dysgalactiae subsp. equisimilis (SDSE) has been widely proposed. Such an increase may be partly explained by the acquisition of new virulence traits by horizontal gene transfer from related streptococci such as Streptococcus pyogenes (GAS) and Streptococcus agalactiae (GBS). A collection of 54 SDSE strains isolated in Italy in the years 2000-2010 from different sources (paediatric throat carriage, invasive and non-invasive diseases) was characterized by emm typing and pulsed-field gel electrophoresis (PFGE) analysis. The virulence repertoire was evaluated by PCR for the presence of GAS superantigen (spe) genes, the streptolysin S (sagA) gene, the group G fibronectin-binding protein (gfbA) gene and GAS-GBS alpha-like protein family (alp) genes; moreover, the ability to invade human epithelial cells was investigated. Resistance to tetracycline, erythromycin and clindamycin was assessed. The combined use of emm typing and PFGE proved to be a reliable strategy for the epidemiological analysis of SDSE isolates. The most frequent emm types were the same as those more frequently reported in other studies, thus indicating the diffusion of a limited number of a few successful emm types fit to disseminate in humans. The speG gene was detected in SDSE strains of different genetic backgrounds. Erythromycin resistance determined by the erm(T) gene, and the unusual, foggy MLSB phenotype, observed in one and seven strains, respectively, have never previously, to our knowledge, been reported in SDSE. Moreover, a new member of the alp family was identified. The identification of new antibiotic and virulence determinants, despite the small size of the sample analysed, shows the importance of constant attention to monitoring the extent of lateral gene transfer in this emerging pathogen.
Assuntos
Portador Sadio/microbiologia , Variação Genética , Infecções Estreptocócicas/microbiologia , Streptococcus/classificação , Streptococcus/genética , Antibacterianos/farmacologia , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Linhagem Celular , Farmacorresistência Bacteriana , Eletroforese em Gel de Campo Pulsado , Endocitose , Células Epiteliais/microbiologia , Genótipo , Humanos , Itália/epidemiologia , Epidemiologia Molecular , Tipagem Molecular , Reação em Cadeia da Polimerase , Infecções Estreptocócicas/epidemiologia , Streptococcus/isolamento & purificação , Streptococcus/patogenicidade , Fatores de Virulência/genéticaRESUMO
The unprecedented wealth of databases that have become available in the era of next-generation sequencing has considerably increased our knowledge of bacterial genetic elements (GEs). At the same time, the advent of single-cell based approaches has brought realization that unsuspected heterogeneity may occur in the bacterial population from a single colony. The increasing use of PCR-based techniques to study new GEs requires careful consideration of the possible different PCR targets associated with different subpopulations if incorrect or incomplete interpretations are to be avoided. In this commentary, confining ourselves to our direct experience, we illustrate some examples of PCR pitfalls that may be encountered while investigating GEs.
RESUMO
Streptococcus suis, a major porcine pathogen, has been receiving growing attention not only for its role in severe and increasingly reported infections in humans, but also for its involvement in drug resistance. Recent studies and the analysis of sequenced genomes have been providing important insights into the S. suis resistome, and have resulted in the identification of resistance determinants for tetracyclines, macrolides, aminoglycosides, chloramphenicol, antifolate drugs, streptothricin, and cadmium salts. Resistance gene-carrying genetic elements described so far include integrative and conjugative elements, transposons, genomic islands, phages, and chimeric elements. Some of these elements are similar to those reported in major streptococcal pathogens such as Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae and share the same chromosomal insertion sites. The available information strongly suggests that S. suis is an important antibiotic resistance reservoir that can contribute to the spread of resistance genes to the above-mentioned streptococci. S. suis is thus a paradigmatic example of possible intersections between animal and human resistomes.