RESUMO
N-acylethanolamines (NAEs) and N-acylphosphatidylethanolamines (NAPEs) are trace constituents of vertebrate cells and tissues and much is known about their metabolism and possible function in animals. Here we report for the first time the identification and quantification of NAEs and NAPEs in several strains of the yeast Saccharomyces cerevisiae. Gas chromatography-mass spectrometry of appropriate derivatives revealed 16:0, 16:1, 18:0 and 18:1 N-acyl groups in both NAE and NAPE whose levels, in wild-type cells, were 50 to 90 and 85 to 750 pmol/micromol lipid P, respectively (depending on the phase of growth). NAPE levels were reduced by 45 to 60% in a strain lacking three type B phospholipases, suggesting their involvement in NAPE synthesis by their known transacylation activity. A yeast strain lacking the YPL103c gene, which codes for a protein with 50.3% homology to human NAPE-specific phospholipase D, exhibited a 60% reduction in NAE, compared to wild-type controls. The exposure of various yeast strains to peroxidative stress, by incubation in media containing 0.6 mM H(2)O(2), resulted in substantial increases in NAE. Because yeast cells lack polyunsaturated fatty acids, they offer a useful system for the study of NAE generation and its potential signaling and cytoprotective effects in the absence of polyunsaturated ("endocannabinoid") congeners.
Assuntos
Etanolaminas/metabolismo , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aciltransferases/metabolismo , Lisofosfolipase/metabolismo , Mutação , Estresse Oxidativo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimentoRESUMO
The genome of the yeast, Saccharomyces cerevisiae, contains three highly similar genes coding for phospholipases B/lysophospholipases. These enzymes behave differently with respect to substrate preferences in vitro and relative contributions to phospholipid catabolism in vivo [Merkel, Fido, Mayr, Pruger, Raab, Zandonella, Kohlwein and Paltauf (1999) J. Biol. Chem. 274, 28121-28127]. It is shown in the present study that, in vitro, pH markedly affects the substrate preference of Plb1p and Plb2p, but not of Plb3p. At the pH optimum of 2.5-3.5, the order of substrate preference of Plb1p and Plb2p is PtdSer (phosphatidylserine)>PtdIns>PtdCho (phosphatidylcholine>PtdEtn (phosphatidylethanolamine). At pH values of 5 and above, the substrate preferences change to PtdCho=PtdEtn for Plb1p and PtdSer=PtdEtn for Plb2p. Accordingly, with cultured cells the ratio of PtdIns/PtdCho breakdown, as reflected in the ratio of GroPIns (glycerophosphoinositol)/GroPCho (glycerophosphocholine) released into the culture medium, is inversely related to the pH of the growth medium. This effect is ascribed to the pH response of Plb1p, because Plb2p does not contribute to the degradation of PtdIns and PtdCho in vivo. Bivalent and tervalent cations activate phospholipases B at pH 5.5, but are inhibitory at pH 2.5. Al3+ at a concentration of 20 mM increases Plb1p activity in vitro by 8-fold and leads to a 9-fold increase in GroPCho release by whole cells. In vivo, cycloheximide strongly inhibits the breakdown of PtdIns, and to a lesser extent PtdCho. However, Al3+-stimulated GroPCho release is almost completely inhibited by cycloheximide. Deletion of PLB3 leads to increased sensitivity to toxic Al3+. Addition of SDS or melittin to cultured cells leads to a significant increase in phospholipid degradation, which is insensitive to inhibition by cycloheximide. Deletion mutants defective in the PLB1 gene are significantly more resistant to SDS than are wild-type cells.
Assuntos
Lisofosfolipase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Alumínio , Cálcio , Concentração de Íons de Hidrogênio , Ferro , Cinética , Lisofosfolipase/química , Magnésio , Proteínas de Membrana , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Especificidade por SubstratoRESUMO
Sec14p of the yeast Saccharomyces cerevisiae is involved in protein secretion and regulation of lipid synthesis and turnover in vivo, but acts as a phosphatidylinositol-phosphatidylcholine transfer protein in vitro. In this work, the five homologues of Sec14p, Sfh1p-Sfh5p, were subjected to biochemical and cell biological analysis to get a better view of their physiological role. We show that overexpression of SFH2 and SFH4 suppressed the sec14 growth defect in a more and SFH1 in a less efficient way, whereas overexpression of SFH3 and SFH5 did not complement sec14. Using C-terminal yEGFP fusions, Sfh2p, Sfh4p and Sfh5p are mainly localized to the cytosol and microsomes similar to Sec14p. Sfh1p was detected in the nucleus and Sfh3p in lipid particles and in microsomes. In contrast to Sec14p, which inhibits phospholipase D1 (Pld1p), overproduction of Sfh2p and Sfh4p resulted in the activation of Pld1p-mediated phosphatidylcholine turnover. Interestingly, Sec14p and the two homologues Sfh2p and Sfh4p downregulate phospholipase B1 (Plb1p)-mediated turnover of phosphatidylcholine in vivo. In summary, Sfh2p and Sfh4p are the Sec14p homologues with the most pronounced functional similarity to Sec14p, whereas the other Sfh proteins appear to be functionally less related to Sec14p.