Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur J Neurol ; 29(5): 1417-1426, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34989476

RESUMO

BACKGROUND AND PURPOSE: Hereditary haemochromatosis (HH) is the most common inherited disorder of systemic iron excess in Northern Europeans. Emerging evidence indicates that brain iron overload occurs in HH. Despite this observation, there is a paucity of literature regarding central neurological manifestations, in particular movement disorders, in HH. The current study documents deep gray matter (DGM) nuclei iron deposition, movement disorders, and clinicoradiological correlations in HH without liver failure. METHODS: This is a cross-sectional study. Consecutive subjects with HFE-haemochromatosis without liver disease were recruited from an outpatient gastroenterology clinic. Age- and sex-matched healthy controls (HCs) were enrolled. Iron content in individual DGM nuclei was measured as mean susceptibility on magnetic resonance imaging using quantitative susceptibility mapping-based regions of interest analysis. Occurrence and phenotype of movement disorders were documented and correlated with patterns of DGM nuclei iron deposition in subjects with HH. RESULTS: Fifty-two subjects with HH and 47 HCs were recruited. High magnetic susceptibility was demonstrated in several DGM nuclei in all HH subjects compared to HCs. Thirty-five subjects with HH had movement disorders. Magnetic susceptibility in specific DGM nuclei correlated with individual movement disorder phenotypes. Serum ferritin, phlebotomy frequency, and duration were poor predictors of brain iron deposition. CONCLUSIONS: Abnormal brain iron deposition can be demonstrated on imaging in all subjects with HH without liver failure. A significant proportion of these subjects manifest movement disorders. Peripheral iron measurements appear not to correlate with brain iron deposition. Therefore, routine neurological examination and quantitative brain iron imaging are recommended in all subjects with HH.


Assuntos
Hemocromatose , Falência Hepática , Transtornos dos Movimentos , Encéfalo/diagnóstico por imagem , Estudos Transversais , Hemocromatose/complicações , Hemocromatose/diagnóstico , Hemocromatose/genética , Humanos , Ferro
2.
Diagnostics (Basel) ; 12(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35054244

RESUMO

Magnetic resonance imaging (MRI) is a sensitive imaging modality for identifying inflammatory and/or demyelinating lesions, which is critical for a clinical diagnosis of MS and evaluating drug responses. There are many unique means of probing brain tissue status, including conventional T1 and T2 weighted imaging (T1WI, T2WI), T2 fluid attenuated inversion recovery (FLAIR), magnetization transfer, myelin water fraction, diffusion tensor imaging (DTI), phase-sensitive inversion recovery and susceptibility weighted imaging (SWI), but no study has combined all of these modalities into a single well-controlled investigation. The goals of this study were to: compare different MRI measures for lesion visualization and quantification; evaluate the repeatability of various imaging methods in healthy controls; compare quantitative susceptibility mapping (QSM) with myelin water fraction; measure short-term longitudinal changes in the white matter of MS patients and map out the tissue properties of the white matter hyperintensities using STAGE (strategically acquired gradient echo imaging). Additionally, the outcomes of this study were anticipated to aid in the choice of an efficient imaging protocol reducing redundancy of information and alleviating patient burden. Of all the sequences used, T2 FLAIR and T2WI showed the most lesions. To differentiate the putative demyelinating lesions from inflammatory lesions, the fusion of SWI and T2 FLAIR was used. Our study suggests that a practical and efficient imaging protocol combining T2 FLAIR, T1WI and STAGE (with SWI and QSM) can be used to rapidly image MS patients to both find lesions and study the demyelinating and inflammatory characteristics of the lesions.

3.
Front Neurosci ; 14: 607705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488350

RESUMO

PURPOSE: To evaluate the effect of resolution on iron content using quantitative susceptibility mapping (QSM); to verify the consistency of QSM across field strengths and manufacturers in evaluating the iron content of deep gray matter (DGM) of the human brain using subjects from multiple sites; and to establish a susceptibility baseline as a function of age for each DGM structure using both a global and regional iron analysis. METHODS: Data from 623 healthy adults, ranging from 20 to 90 years old, were collected across 3 sites using gradient echo imaging on one 1.5 Tesla and two 3.0 Tesla MR scanners. Eight subcortical gray matter nuclei were semi-automatically segmented using a full-width half maximum threshold-based analysis of the QSM data. Mean susceptibility, volume and total iron content with age correlations were evaluated for each measured structure for both the whole-region and RII (high iron content regions) analysis. For the purpose of studying the effect of resolution on QSM, a digitized model of the brain was applied. RESULTS: The mean susceptibilities of the caudate nucleus (CN), globus pallidus (GP) and putamen (PUT) were not significantly affected by changing the slice thickness from 0.5 to 3 mm. But for small structures, the susceptibility was reduced by 10% for 2 mm thick slices. For global analysis, the mean susceptibility correlated positively with age for the CN, PUT, red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN). There was a negative correlation with age in the thalamus (THA). The volumes of most nuclei were negatively correlated with age. Apart from the GP, THA, and pulvinar thalamus (PT), all the other structures showed an increasing total iron content despite the reductions in volume with age. For the RII regional high iron content analysis, mean susceptibility in most of the structures was moderately to strongly correlated with age. Similar to the global analysis, apart from the GP, THA, and PT, all structures showed an increasing total iron content. CONCLUSION: A reasonable estimate for age-related iron behavior can be obtained from a large cross site, cross manufacturer set of data when high enough resolutions are used. These estimates can be used for correcting for age related iron changes when studying diseases like Parkinson's disease, Alzheimer's disease, and other iron related neurodegenerative diseases.

4.
Neuroimage Clin ; 25: 102103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31869769

RESUMO

Parkinson's disease (PD) is a clinically heterogeneous chronic progressive neuro-degenerative disease with loss of dopaminergic neurons in the nigrosome 1 (N1) territory of the substantia nigra pars compacta (SNpc). To date, there has been a major effort to identify changes in the N1 territory by monitoring increases of iron in the SNpc. However, there is no standard protocol being used to visualize or characterize the N1 territory. Therefore, the purpose of this study was to create a robust high quality, rapid imaging protocol, determine a slice by slice characterization of the appearance of N1 (the "N1 sign") and evaluate the loss of the N1 sign in order to differentiate healthy controls (HCs) from patients with PD. Firstly, one group of 10 HCs was used to determine the choice of imaging parameters. Secondly, another group of 80 HCs was used to characterize the appearance of the N1 sign and train the raters. In this step, the magnitude, susceptibility weighted images (SWI), quantitative susceptibility maps (QSM) and true SWI (tSWI) images were all reviewed using data from a 3D gradient recalled echo sequence. A resolution of 0.67 mm × 0.67 mm × 1.34 mm was chosen based on the ability to cover all the basal ganglia, midbrain and dentate nucleus with good signal-to-noise with echo times of 11 ms and 20 ms. Thirdly, 80 Parkinsonism and related disorders patients [idiopathic Parkinson's disease (IPD): 57; atypical parkinsonian syndromes (APs): 14; essential tremor (ET): 9] and one additional group of 80 age-matched HCs were blindly analyzed for the presence or absence of the N1 sign for a differential diagnosis. From the first group of 80 HCs, all of the 76 (100%) cases (4 were excluded due to motion artifacts) showed the N1 sign in one form or another after reviewing the first 5 caudal slices of the SN. For the second group of 80 HCs, 78 (97.5%) showed the N1 sign in at least 2 slices. Of the 80 Parkinsonism and related disorders patients, 32 (56.1%, 32/57) IPD and 6 (42.9%, 6/14) APs showed a bilateral loss of the N1 sign, 12 (21.1%, 12/57) IPD and 6 (42.9%, 6/14) APs showed the N1 sign unilaterally and 13 (22.8%, 13/57) IPD and 2 (14.2%, 2/14) APs showed the N1 sign bilaterally. Also, all 9 (100%, 9/9) ET patients showed the N1 sign bilaterally. The mean total structure and mean high susceptibility region for the SN for both IPD and APs patients with bilateral loss of N1 were higher than those of the HCs (p < 0.002). In conclusion, the N1 sign can be consistently visualized using tSWI with a resolution of at least 0.67 mm × 0.67 mm × 1.34 mm and can be seen in 95% of HCs.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Transtornos Parkinsonianos/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Neuroimagem/normas , Doença de Parkinson/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA