Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 92(10): 6949-6957, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32297730

RESUMO

High rates of glycolysis in tumors have been associated with cancer metastasis, tumor recurrence, and poor outcomes. In this light, single cells that exhibit high glycolysis are specific targets for therapy. However, the study of these cells requires efficient tools for their isolation. We use a droplet microfluidic technique developed in our lab, Sorting by Interfacial Tension (SIFT), to isolate cancer cell subpopulations based on glycolysis without the use of labels or active sorting components. By controlling the flow conditions on chip, the threshold of selection can be modified, enabling the isolation of cells with different levels of glycolysis. Hypoxia in tumors, that can be simulated with treatment with CoCl2, leads to an increase in glycolysis, and more dangerous tumors. The device was used to enrich CoCl2 treated MDA-MB 231 breast cancer cells from an untreated population. It is also used to sort K562 human chronic myelogenous leukemia cells that have either been treated or untreated with 2-deoxy-d-glucose (2DG), a pharmaceutical that targets cell metabolism. The technique provides a facile and robust way of separating cells based on elevated glycolytic activity; a biomarker associated with cancer cell malignancy.


Assuntos
Separação Celular , Dispositivos Lab-On-A-Chip , Análise de Célula Única , Linhagem Celular Tumoral , Glicólise , Humanos
2.
Micromachines (Basel) ; 11(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126559

RESUMO

We present a method to photo-tag individual microfluidic droplets for latter selection by passive sorting. The use of a specific surfactant leads to the interfacial tension to be very sensitive to droplet pH. The photoexcitation of droplets containing a photoacid, pyranine, leads to a decrease in droplet pH. The concurrent increase in droplet interfacial tension enables the passive selection of irradiated droplets. The technique is used to select individual droplets within a droplet array as illuminated droplets remain in the wells while other droplets are eluted by the flow of the external oil. This method was used to select droplets in an array containing cells at a specific stage of apoptosis. The technique is also adaptable to continuous-flow sorting. By passing confined droplets over a microfabricated trench positioned diagonally in relation to the direction of flow, photo-tagged droplets were directed toward a different chip exit based on their lateral movement. The technique can be performed on a conventional fluorescence microscope and uncouples the observation and selection of droplets, thus enabling the selection on a large variety of signals, or based on qualitative user-defined features.

3.
Anal Chim Acta ; 1089: 108-114, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31627807

RESUMO

Droplet microfluidics has the ability to greatly increase the throughput of screening and sorting of enzymes by carrying reagents in picoliter droplets flowing in inert oils. It was found with the use of a specific surfactant, the interfacial tension of droplets can be very sensitive to droplet pH. This enables the sorting of droplets of different pH when confined droplets encounter a microfabricated trench. The device can be extended to sort enzymes, as a large number of enzymatic reactions lead to the production of an acidic or basic product and a concurrent change in solution pH. The progress of an enzymatic reaction is tracked from the position of a flowing train of droplets. We demonstrate the sorting of esterase isoenzymes based on their enzymatic activity. This label-free technology, that we dub droplet sorting by interfacial tension (SIFT), requires no active components and would have applications for enzyme sorting in high-throughput applications that include enzyme screening and directed evolution of enzymes.


Assuntos
Hidrolases de Éster Carboxílico/isolamento & purificação , Ensaios Enzimáticos/métodos , Acetatos/química , Animais , Hidrolases de Éster Carboxílico/química , Ensaios Enzimáticos/instrumentação , Fluorocarbonos/química , Isoenzimas/química , Isoenzimas/isolamento & purificação , Dispositivos Lab-On-A-Chip , Fígado/enzimologia , Microfluídica/instrumentação , Microfluídica/métodos , Óleos/química , Fenóis/química , Reprodutibilidade dos Testes , Tensão Superficial , Suínos , Água/química
4.
Lab Chip ; 19(8): 1344-1351, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30849144

RESUMO

Selection of live cells from a population is critical in many biological studies and biotechnologies. We present here a novel droplet microfluidic approach that allows for label-free and passive selection of live cells using the glycolytic activity of individual cells. It was observed that with the use of a specific surfactant utilized to stabilize droplet formation, the interfacial tension of droplets was very sensitive to pH. After incubation, cellular lactate release results in droplets containing a live cell to attain a lower pH than other droplets. This enables the sorting of droplets containing live cells when confined droplets flow over a microfabricated trench oriented diagonally with respect to the direction of flow. The technique is demonstrated with human U87 glioblastoma cells for the selection of only droplets containing a live cell while excluding either empty droplets or droplets containing a dead cell. This label-free sorting method, dubbed sorting by interfacial tension (SIFT) presents a new strategy to sort diverse cell types based on metabolic activity.


Assuntos
Separação Celular/instrumentação , Dispositivos Lab-On-A-Chip , Análise de Célula Única , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Concentração de Íons de Hidrogênio , Tensão Superficial
5.
Polymers (Basel) ; 10(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30960769

RESUMO

Cyclic polymers were produced by end-to-end coupling of telechelic linear polymers under dilute conditions in THF, using intramolecular atom transfer radical coupling or click chemistry. In addition to the expected shift to longer elution times on gel permeation chromatography (GPC) indicative of the formation of cyclic product, lower molecular weight species were consistently observed upon analysis of the unpurified cyclization reaction mixture. By systematically removing or altering single reaction components in the highly dilute cyclization reaction, it was found that THF itself was responsible for the low-molecular-weight material, forming oligomeric chains of poly(THF) regardless of the other reaction components. When the reactions were performed at higher concentrations and for shorter time intervals, conducive to intermolecular chain-end-joining reactions, the low-molecular-weight peaks were absent. Isolation of the material and analysis by ¹H NMR confirmed that poly(THF) was being formed in the highly dilute conditions required for cyclization by end-to-end coupling. When a series of mock cyclization reactions were performed with molar ratios of the reactants held constant, but concentrations changed, it was found that lower concentrations of reactants led to higher amounts of poly(THF) side product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA