Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Exp Bot ; 75(1): 103-122, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725963

RESUMO

Plants are commonly exposed to abiotic stressors, which can affect their growth, productivity, and quality. Previously, the maize transcription factor ZmCCT was shown to be involved in the photoperiod response, delayed flowering, and quantitative resistance to Gibberella stalk rot. In this study, we demonstrate that ZmCCT can regulate plant responses to drought. ZmCCT physically interacted with ZmFra a 1, ZmWIPF2, and ZmAux/IAA8, which localized to the cell membrane, cytoplasm, and nucleus, respectively, both in vitro and in vivo in a yeast two-hybrid screen in response to abiotic stress. Notably, ZmCCT recruits ZmWIPF2 to the nucleus, which has strong E3 self-ubiquitination activity dependent on its RING-H2 finger domain in vitro. When treated with higher indole-3-acetic acid/abscisic acid ratios, the height and root length of Y331-ΔTE maize plants increased. Y331-ΔTE plants exhibited increased responses to exogenously applied auxin or ABA compared to Y331 plants, indicating that ZmCCT may be a negative regulator of ABA signalling in maize. In vivo, ZmCCT promoted indole-3-acetic acid biosynthesis in ZmCCT-overexpressing Arabidopsis. RNA-sequencing and DNA affinity purification-sequencing analyses showed that ZmCCT can regulate the expression of ZmRD17, ZmAFP3, ZmPP2C, and ZmARR16 under drought. Our findings provide a detailed overview of the molecular mechanism controlling ZmCCT functions and highlight that ZmCCT has multiple roles in promoting abiotic stress tolerance.


Assuntos
Arabidopsis , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Zea mays/genética , Zea mays/metabolismo , Resistência à Seca , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Secas , Estresse Fisiológico/genética
2.
Plant Mol Biol ; 104(6): 583-595, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32901412

RESUMO

KEY MESSAGE: Mapping QTL for stem-related traits using RIL population with ultra-high density bin map can better dissect pleiotropic QTL controlling stem architecture that can provide valuable information for maize genetic improvement. The maize stem is one of the most important parts of the plant and is also a component of many agronomic traits in maize. This study aimed to advance our understanding of the genetic mechanisms underlying maize stem traits. A recombinant inbred line (RIL) population derived from a cross between Ye478 and Qi319 was used to identify quantitative trait loci (QTL) controlling stem height (SH), ear height (EH), stem node number (SN), ear node (EN), and stem diameter (SD), and two derived traits (ear height coefficient (EHc) and ear node coefficient (ENc)). Using an available ultra-high density bin map, 46 putative QTL for these traits were detected on chromosomes 1, 3, 4, 5, 6, 7, 8, and 10. Individual QTL explained 3.5-17.7% of the phenotypic variance in different environments. Two QTL for SH, three for EH, two for EHc, one for SN, one for EN, and one for SD were detected in more than one environment. QTL with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1, 3, 4, 6, 8, and 10, which are potential target regions for fine-mapping and marker-assisted selection in maize breeding programs. Further, we discussed segregation of bin markers (mk1630 and mk4452) associated with EHc QTL in the RIL population. We had identified two putative WRKY DNA-binding domain proteins, AC209050.3_FG003 and GRMZM5G851490, and a putative auxin response factor, GRMZM2G437460, which might be involved in regulating plant growth and development, as candidate genes for the control of stem architecture.


Assuntos
Cromossomos de Plantas , Caules de Planta/genética , Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Variação Genética , Fenótipo
3.
J Exp Bot ; 67(3): 809-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26608645

RESUMO

Calcium (Ca(2+)) mobilization is a central theme in various plant signal transduction pathways. We demonstrate that Arabidopsis thaliana cyclic nucleotide-gated channel 2 (AtCNGC2) is involved in jasmonic acid (JA)-induced apoplastic Ca(2+) influx in Arabidopsis epidermal cells. Ca(2+) imaging results showed that JA can induce an elevation in the cytosolic cAMP concentration ([cAMP]cyt), reaching a maximum within 3 min. Dibutyryl cAMP (db-cAMP), a cell membrane-permeable analogue of cAMP, induced an increase in the cytosolic Ca(2+) concentration ([Ca(2+)]cyt), with a peak at 4 min. This [Ca(2+)]cyt increase was triggered by the JA-induced increase in [cAMP]cyt. W-7[N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], an antagonist of calmodulin, positively modulated the JA-induced increase in [Ca(2+)]cyt, while W-5[N-(6-aminohexyl)-1-naphthalenesulfonamide], an inactive antagonist of calmodulin, had no apparent effect. db-cAMP and JA positively induced the expression of primary (i.e. JAZ1 and MYC2) and secondary (i.e. VSP1) response genes in the JA signalling pathway in wild-type Arabidopsis thaliana, whereas they had no significant effect in the AtCNGC2 mutant 'defense, no death (dnd1) plants. These data provide evidence that JA first induces the elevation of cAMP, and cAMP, as an activating ligand, activates the AtCNGC2 channel, resulting in apoplastic Ca(2+) influx through AtCNGC2.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bucladesina/farmacologia , Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Sulfonamidas/farmacologia
4.
Biochem Biophys Res Commun ; 462(2): 144-50, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25937463

RESUMO

NAC proteins are plant-specific transcription factors that play essential roles in plant development and various abiotic stress responses. A comprehensive analysis of maize NAC genes was performed in this study. A total of 157 non-redundant maize NAC genes including seven membrane-bound members were identified and found to be unevenly distributed on 10 maize chromosomes. Motif composition analysis indicated that the maize NAC proteins share three relatively conserved motifs in the NAC domain within the N-terminal region. Phylogenetic analysis of 157 maize NAC proteins accompanied by 117 NAC proteins from Arabidopsis and 151 from rice were presented. The NAC proteins evaluated were divided into two large groups including 18 subgroups. Gene duplication analysis indicated that gene loss occurred during maize evolution. Seven NAC members that belong to the same clade of maize NAC domain genes were isolated, and overlapping expression patterns were observed under various abiotic stresses, including low temperature, high salinity and dehydration, and phytohormone abscisic acid treatments. This suggested that NAC members function as stress-responsive transcription factors in ABA-dependent signaling pathways. Relatively higher expression levels of these selected maize NAC genes were detected in roots. The stress responsive NAC genes may have applications in molecular breeding to improve crop stress tolerance.


Assuntos
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA de Plantas/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Regiões Promotoras Genéticas , Estresse Fisiológico
5.
Adipocyte ; 11(1): 202-212, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35410572

RESUMO

Obesity is a severe disease worldwide. Mitochondrial autophagy (mitophagy) may be related to metabolic abnormalities in obese individuals, but the mechanism is still unclear. We aimed to investigate whether nuclear receptors NR1D1 and ULK1 influence obesity by affecting mitophagy. In vitro model was established by inducing 3T3-L1 cells differentiation. MTT was detected cell viability. ELISA was tested triglyceride (TG). Oil red O staining was performed to detect lipid droplets. Flow cytometry was measured mtROS. ChIP and Dual-luciferase reporter assay were verified NR1D1 bind to ULK1. LC3 level was detected by IF. After differentiation medium treatment, cell viability was decreased, TG content and lipid droplets were increased Moreover, NR1D1 expression was reduced in Model group. NR1D1 overexpression was increased cell viability, reduced TG content and lipid droplets. Subsequently, NR1D1 inhibited TOM20 and mtROS, whereas, Parkin and PINK1 were accelerated. NR1D1 overexpression facilitated LC3 expression, whereas ULK1 knockdown was reversed the effect of NR1D1 overexpression. Liensinine also reversed the effect of NR1D1 overexpression, that is, cell viability was reduced, mtROS, TG content and lipid droplets were increased. The combination of nuclear receptor NR1D1 and ULK1 promoted mitophagy in adipocytes to alleviate obesity, which provided new target and strategy for obesity treatment.Abbreviations: Mitochondrial autophagy (mitophagy), triglyceride (TG), Uncoordinated-51 like autophagy activating kinase 1 (ULK1), Nuclear receptor subfamily 1 group D member 1 (NR1D1), American Type Culture Collection (ATCC), fetal bovine serum (FBS), 3-isobutyl-1-methylxanthine (IBMX), dexamethasone (DEX), short hairpin RNA ULK1 (sh-ULK1), wild-type (WT), mutant (MUT), Enzyme-linked immunosorbent assay (ELISA), mitochondrial reactive oxygen species (mtROS), Chromatin immunoprecipitation (ChIP), Quantitative real-time PCR (qRT-PCR), Immunofluorescence (IF), standard deviation (SD).


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Mitofagia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Adipócitos/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Mitofagia/genética , Células NIH 3T3 , Obesidade/metabolismo , Triglicerídeos
7.
Biomed Res Int ; 2016: 1575430, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27747223

RESUMO

Ash1 is a known H3K36-specific histone demethylase that is required for normal Hox gene expression and fertility in Drosophila and mammals. However, little is known about the expression and function of the fungal ortholog of Ash1 in phytopathogenic fungus Magnaporthe oryzae. Here we report that MoKMT2H, an Ash1-like protein, is required for conidium germination and virulence in rice. We obtained MoKMT2H null mutant (ΔMoKMT2H) using a target gene replacement strategy. In the ΔMoKMT2H null mutants, global histone methyltransferase modifications (H3K4me3, H3K9me3, H3K27me3, and H3K36me2/3) of the genome were unaffected. The ΔMoKMT2H mutants showed no defect in vegetative hyphal growth, conidium morphology, conidiation, or disease lesion formation on rice leaves. However, the MoKMT2H deletion mutants were delayed for conidium germination and consequently had decreased virulence. Taken together, our results indicated that MoKMT2H plays an important role in conidium germination during appressorium formation in the rice blast fungus and perhaps other pathogenic plant fungi.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Magnaporthe/fisiologia , Mutação , Esporos Fúngicos/fisiologia , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Ácidos Nucleicos/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos , Esporos Fúngicos/genética , Virulência
8.
Gene ; 546(2): 367-77, 2014 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-24862217

RESUMO

MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this study, 271 foxtail millet miRNAs belonging to 44 families were identified using a bioinformatics approach. Twenty-three pairs of sense/antisense miRNAs belonging to 13 families, and 18 miRNA clusters containing members of 8 families were discovered in foxtail millet. We identified 432 potential targets for 38 miRNA families, most of which were predicted to be involved in plant development, signal transduction, metabolic pathways, disease resistance, and environmental stress responses. Gene ontology (GO) analysis revealed that 101, 56, and 23 target genes were involved in molecular functions, biological processes, and cellular components, respectively. We investigated the expression patterns of 43 selected miRNAs using qRT-PCR analysis. All of the miRNAs were expressed ubiquitously with many exhibiting different expression levels in different tissues. We validated five predicted targets of four miRNAs using the RNA ligase mediated rapid amplification of cDNA end (5'-RLM-RACE) method.


Assuntos
Biologia Computacional , Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs , RNA de Plantas , Setaria (Planta) , Resistência à Doença/fisiologia , MicroRNAs/biossíntese , MicroRNAs/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA