Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620079

RESUMO

Factor X (FX)-deficiency is a rare bleeding disorder manifesting a bleeding tendency caused by low FX activity levels. We aimed to explore the use of fitusiran (an investigational siRNA that silences antithrombin expression) to increase thrombin generation and the in vivo hemostatic potential under conditions of FX-deficiency. We therefore developed a novel model of inducible FX-deficiency, generating mice expressing <1% FX activity and antigen (f10low-mice). Compared to control f10WT-mice, f10low-mice had 6- and 4-fold prolonged clotting times in Prothrombin Time- and activated Partial Prothrombin Time-assays, respectively (p<0.001). Thrombin generation was severely reduced, irrespective whether tissue factor or factor XIa was used as initiator. In vivo analysis revealed near-absent thrombus formation in a laser-induced vessel injury-model. Furthermore, in two distinct bleeding models, f10low-mice displayed an increased bleeding tendency compared to f10WT-mice. In the tail-clip assay blood loss was increased from 12±16 microliter to 590±335 microliter (p<0.0001). In the saphenous vein puncture (SVP)-model, the number of clots generated was reduced from 19±5 clots/30 min for f10WT-mice to 2±2 clots/30 min (p<0.0001) for f10low-mice. In both models, bleeding was corrected upon infusion of purified FX. Treatment of f10low-mice with fitusiran (2x10 mg/kg at one-week interval) resulted in 17±6% residual antithrombin activity and increased thrombin generation (4-fold and 2-3-fold increase in endogenous thrombin potential and thrombin peak, respectively). In the SVP-model, the number of clots was increased to 8±6 clots/30 min (p=0.0029). Altogether, we demonstrate that reduction of antithrombin levels is associated with improved hemostatic activity under conditions of FX-deficiency.

2.
Circ Res ; 134(10): e93-e111, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563147

RESUMO

BACKGROUND: Endothelial activation promotes the release of procoagulant extracellular vesicles and inflammatory mediators from specialized storage granules. Endothelial membrane exocytosis is controlled by phosphorylation. We hypothesized that the absence of PTP1B (protein tyrosine phosphatase 1B) in endothelial cells promotes venous thromboinflammation by triggering endothelial membrane fusion and exocytosis. METHODS: Mice with inducible endothelial deletion of PTP1B (End.PTP1B-KO) underwent inferior vena cava ligation to induce stenosis and venous thrombosis. Primary endothelial cells from transgenic mice and human umbilical vein endothelial cells were used for mechanistic studies. RESULTS: Vascular ultrasound and histology showed significantly larger venous thrombi containing higher numbers of Ly6G (lymphocyte antigen 6 family member G)-positive neutrophils in mice with endothelial PTP1B deletion, and intravital microscopy confirmed the more pronounced neutrophil recruitment following inferior vena cava ligation. RT2 PCR profiler array and immunocytochemistry analysis revealed increased endothelial activation and adhesion molecule expression in primary End.PTP1B-KO endothelial cells, including CD62P (P-selectin) and VWF (von Willebrand factor). Pretreatment with the NF-κB (nuclear factor kappa B) kinase inhibitor BAY11-7082, antibodies neutralizing CD162 (P-selectin glycoprotein ligand-1) or VWF, or arginylglycylaspartic acid integrin-blocking peptides abolished the neutrophil adhesion to End.PTP1B-KO endothelial cells in vitro. Circulating levels of annexin V+ procoagulant endothelial CD62E+ (E-selectin) and neutrophil (Ly6G+) extracellular vesicles were also elevated in End.PTP1B-KO mice after inferior vena cava ligation. Higher plasma MPO (myeloperoxidase) and Cit-H3 (citrullinated histone-3) levels and neutrophil elastase activity indicated neutrophil activation and extracellular trap formation. Infusion of End.PTP1B-KO extracellular vesicles into C57BL/6J wild-type mice most prominently enhanced the recruitment of endogenous neutrophils, and this response was blunted in VWF-deficient mice or by VWF-blocking antibodies. Reduced PTP1B binding and tyrosine dephosphorylation of SNAP23 (synaptosome-associated protein 23) resulting in increased VWF exocytosis and neutrophil adhesion were identified as mechanisms, all of which could be restored by NF-κB kinase inhibition using BAY11-7082. CONCLUSIONS: Our findings show that endothelial PTP1B deletion promotes venous thromboinflammation by enhancing SNAP23 phosphorylation, endothelial VWF exocytosis, and neutrophil recruitment.


Assuntos
Exocitose , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Trombose Venosa , Fator de von Willebrand , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/deficiência , Humanos , Camundongos , Fator de von Willebrand/metabolismo , Fator de von Willebrand/genética , Trombose Venosa/metabolismo , Trombose Venosa/genética , Trombose Venosa/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/genética , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Veia Cava Inferior/metabolismo , Veia Cava Inferior/patologia , Masculino , Infiltração de Neutrófilos , NF-kappa B/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260389

RESUMO

The contribution of NETs (neutrophil extracellular traps) to thrombus formation has been intensively documented in both arterial and venous thrombosis in mice. We previously demonstrated that adenosine triphosphate (ATP)-activated neutrophils play a key role in initiating the tissue factor-dependent activation of the coagulation cascade, leading to thrombus formation following laser-induced injury. Here, we investigated the contribution of NETs to thrombus formation in a laser-induced injury model. In vivo, treatment of mice with DNase-I significantly inhibited the accumulation of polymorphonuclear neutrophils at the site of injury, neutrophil elastase secretion, and platelet thrombus formation within seconds following injury. Surprisingly, electron microscopy of the thrombus revealed that neutrophils present at the site of laser-induced injury did not form NETs. In vitro, ATP, the main neutrophil agonist present at the site of laser-induced injury, induced the overexpression of PAD4 and CitH3 but not NETosis. However, compared to no treatment, the addition of DNase-I was sufficient to cleave ATP and adenosine diphosphate (ADP) in adenosine. Human and mouse platelet aggregation by ADP and neutrophil activation by ATP were also significantly reduced in the presence of DNase-I. We conclude that following laser-induced injury, neutrophils but not NETs are involved in thrombus formation. Treatment with DNase-I induces the hydrolysis of ATP and ADP, leading to the generation of adenosine and the inhibition of thrombus formation in vivo.


Assuntos
Desoxirribonuclease I/metabolismo , Armadilhas Extracelulares/metabolismo , Trombose/metabolismo , Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Fibrina/metabolismo , Humanos , Hidrólise , Lasers , Elastase de Leucócito/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ativação de Neutrófilo , Neutrófilos/metabolismo , Ativação Plaquetária , Proteína-Arginina Desiminase do Tipo 4/metabolismo
4.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163333

RESUMO

Thrombosis is one of the major causes of mortality worldwide. Notably, it is not only implicated in cardiovascular diseases, such as myocardial infarction (MI), stroke, and pulmonary embolism (PE), but also in cancers. Understanding the cellular and molecular mechanisms involved in platelet thrombus formation is a major challenge for scientists today. For this purpose, new imaging technologies (such as confocal intravital microscopy, electron microscopy, holotomography, etc.) coupled with animal models of thrombosis (mouse, rat, rabbit, etc.) allow a better overview of this complex physiopathological process. Each of the cellular components is known to participate, including the subendothelial matrix, the endothelium, platelets, circulating cells, and, notably, neutrophils. Initially known as immune cells, neutrophils have been considered to be part of the landscape of thrombosis for more than a decade. They participate in this biological process through their expression of tissue factor (TF) and protein disulfide isomerase (PDI). Moreover, highly activated neutrophils are described as being able to release their DNA and thus form chromatin networks known as "neutrophil extracellular traps" (NETs). Initially, described as "dead sacrifices for a good cause" that prevent the dissemination of bacteria in the body, NETs have also been studied in several human pathologies, such as cardiovascular and respiratory diseases. Many articles suggest that they are involved in platelet thrombus formation and the activation of the coagulation cascade. This review presents the models of thrombosis in which neutrophils and NETs are involved and describes their mechanisms of action. We have even highlighted the medical diagnostic advances related to this research.


Assuntos
Armadilhas Extracelulares , Trombose , Animais , Plaquetas/metabolismo , Armadilhas Extracelulares/metabolismo , Camundongos , Modelos Animais , Neutrófilos/metabolismo , Coelhos , Ratos , Trombose/patologia
5.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163180

RESUMO

Spontaneous venous thrombosis is often the first clinical sign of cancer, and it is linked to a worsened survival rate. Traditionally, tumor-cell induced platelet activation has been the main actor studied in cancer-associated-thrombosis. However, platelet involvement alone does not seem to be sufficient to explain this heightened pro-thrombotic state. Neutrophils are emerging as key players in both thrombus generation and cancer progression. Neutrophils can impact thrombosis through the release of pro-inflammatory cytokines and expression of molecules like P-selectin and Tissue Factor (TF) on their membrane and on neutrophil-derived microvesicles. Their role in cancer progression is evidenced by the fact that patients with high blood-neutrophil counts have a worsened prognosis. Tumors can attract neutrophils to the cancer site via pro-inflammatory cytokine secretions and induce a switch to pro-tumoral (or N2) neutrophils, which support metastatic spread and have an immunosuppressive role. They can also expel their nuclear contents to entrap pathogens forming Neutrophil Extracellular Traps (NETs) and can also capture coagulation factors, enhancing the thrombus formation. These NETs are also known to have pro-tumoral effects by supporting the metastatic process. Here, we strived to do a comprehensive literature review of the role of neutrophils as drivers of both cancer-associated thrombosis (CAT) and cancer progression.


Assuntos
Neoplasias/metabolismo , Neutrófilos/metabolismo , Trombose/imunologia , Plaquetas/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Neoplasias/imunologia , Neutrófilos/imunologia , Selectina-P/metabolismo , Ativação Plaquetária/imunologia , Ativação Plaquetária/fisiologia , Tromboplastina/metabolismo , Trombose/metabolismo , Trombose Venosa/metabolismo
6.
Semin Thromb Hemost ; 45(6): 569-575, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31382305

RESUMO

Cancer-related venous thromboembolism (VTE) is frequent and constitutes the second leading cause of death in patients with cancer. High platelet count is one of independent predictive factors of cancer-associated VTE. Besides the implication of platelets in cancer-associated VTE, recent clinical and experimental evidences support that platelets play several roles in the progression of malignancies and inversely, cancer can also influence platelet count and activity. The objective of this report is to review the current literature regarding the role of platelets in cancer through experimental results and population-based studies. Platelets are implicated in cancer progression and metastasis through proangiogenic factors (growth factors and signaling pathways), antiangiogenic factors (angiostatin, endostatin, thrombospondin-1), and matrix metalloproteinases. In addition, platelets are involved in cancer-associated thrombosis and thus tumor cell-induced platelet activation, through anionic phospholipids on their surface, released soluble factors, such as P-selectin, CD40 ligand, platelet factor 4, thrombospondin-1 or beta-thromboglobulin, tumor cell procoagulant proteins (tissue factor, urokinase-type plasminogen activator, plasminogen activator inhibitor type 1), and microparticles. Due to these different mechanisms, platelets may represent a potential therapeutic target. The main current treatments against platelets are: (1) acetylsalicylic acid (aspirin) and nonsteroidal anti-inflammatory drugs, nonselective cyclo-oxygenase (COX)-1 and COX-2 inhibitors, which are associated with decreased cancer incidence and better overall survival and (2) irreversible inhibitor of P2Y12 subtype which decreases cancer incidence. Platelets are key players in tumor growth, metastasis, and cancer-associated thrombosis. This multifaceted role identifies them as a relevant therapeutic target for prevention of cancer occurrence and treatment of cancer.


Assuntos
Plaquetas/metabolismo , Neoplasias/sangue , Humanos
7.
Semin Thromb Hemost ; 45(6): 593-603, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31430786

RESUMO

Microvesicles (MVs) are small membrane enclosed structures released into the extracellular space by virtually all cell types. Their composition varies according to the cell origin and the stimulus which caused their formation. They harbor functional molecules and participate in intercellular communication. Endothelium, inflammatory cells, and cancer cells produce procoagulant MVs which contribute to cancer-associated thrombosis (CAT) in animal models. The tissue factor (TF) conveyed by these MVs was shown to play a key role in different animal models of experimental CAT. Alternatively, other molecular mechanisms involving polyphosphates or phosphatidylethanolamine could also be involved. In clinical practice, an association between an increase in the number of TF-positive or the procoagulant activity of these MVs and the occurrence of CAT has indeed been demonstrated in pancreatic-biliary cancers, suggesting that they could behave as a biomarker predictive for CAT. However, to date, this association was not confirmed in other types of cancer. Potential causes explaining this limited associated between MVs and CAT are (1) the diversity of mechanisms associating MVs and different types of cancer; (2) a more complex role of MVs in hemostasis integrating their anticoagulant and fibrinolytic activity; and (3) the lack of sensitivity, reproducibility, and standardization of current methodologies permitting measurement of MVs. Each of these hypotheses constitutes an interesting exploration path for a future reassessment of the clinical interest of the MVs in CAT.


Assuntos
Micropartículas Derivadas de Células/patologia , Neoplasias/complicações , Trombose/etiologia , Humanos , Neoplasias/patologia , Trombose/patologia
8.
J Autoimmun ; 100: 120-130, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30930069

RESUMO

Diffuse alveolar hemorrhage (DAH) is a life-threatening complication of systemic lupus erythematosus (SLE) and systemic vasculitis. Although initially described to have antibacterial properties, increasing evidence suggests that neutrophil extracellular traps (NETs) have a detrimental role in both autoimmune diseases and acute lung injury. We investigated whether NETs could be detected in a murine model of pristane-induced lupus DAH and contribute to lung injury. Such NETs might constitute a therapeutic target. NETs were characterized by immunofluorescence staining of DNA, neutrophil elastase and citrullinated histones. Evaluation of lung injury was performed by haematoxylin-eosin staining and a quantification program. Clinical status of the mice was assessed by measurement of arterial oxygen saturation and survival curves after recombinant human deoxyribonuclease-1 (Rh-DNase-1) inhalations or polymorphonuclear neutrophil (PMN) depletion. Pristane was found to promote NETs formation in vitro and in vivo. Treatment of mice with Rh-DNase-1 inhalations cleared NETs and reduced lung injury. Clinical status improved significantly, with increased arterial oxygenation and survival. Following PMN depletion, NETs were absent with a subsequent reduction of lung injury and improved arterial oxygenation. These results support a pathogenic role of PMNs and NETs in lung injury during pristane-induced DAH. Targeting NETs with Rh-DNase-1 inhalations could constitute an interesting adjuvant therapy in human DAH.


Assuntos
Lesão Pulmonar Aguda/imunologia , Armadilhas Extracelulares/imunologia , Hemorragia/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Neutrófilos/imunologia , Alvéolos Pulmonares/imunologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Desoxirribonuclease I/farmacologia , Hemorragia/tratamento farmacológico , Hemorragia/patologia , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Neutrófilos/patologia , Alvéolos Pulmonares/patologia
9.
Int J Mol Sci ; 20(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212608

RESUMO

Venous thromboembolism (VTE) is a common complication for cancer patients. VTE-associated risk varies according to the type of tumor disease. Head and neck cancer is a common cancer worldwide, and most tumors are squamous cell carcinomas due to tobacco and alcohol abuse. The risk of VTE associated with head and neck (H&N) cancer is considered empirically low, but despite the high incidence of H&N cancer, few data are available on this cancer; thus, it is difficult to state the risk of VTE. Our review aims to clarify this situation and tries to assess the real VTE risk associated with H&N cancer. We report that most clinical studies have concluded that there is a very low thrombosis risk associated with H&N cancer. Even with the biases that often exist, this clinical review seems to confirm that the risk of VTE was empirically hypothesized. Furthermore, we highlight that H&N cancer has all the biological features of a cancer associated with a high thrombosis risk, including a strong expression of procoagulant proteins, modified thrombosis/fibrinolysis mechanisms, and secretions of procoagulant microparticles and procoagulant cytokines. Thus, this is a paradoxical situation, and some undiscovered mechanisms that could explain this clinical biological ambivalence might exist.


Assuntos
Carcinoma de Células Escamosas/complicações , Neoplasias de Cabeça e Pescoço/complicações , Trombose/etiologia , Tromboembolia Venosa/etiologia , Animais , Feminino , Humanos , Masculino , Fatores de Risco
10.
Int J Cancer ; 138(4): 939-48, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26341361

RESUMO

Microparticles are plasma membrane vesicles produced by apoptotic or activated cells and resting cancer cells. The concentration, origin and procoagulant properties of circulating microparticles are reported to differ according to pathological settings (inflammation, cancer and cardiovascular diseases). In case of cancer, different studies have reported a variation in the concentration of circulating microparticles, with an increase in procoagulant and tumor-associated antigen-bearing microparticles. However, the cancer specificity of these results remains unknown. The objective was to establish a specific signature of colorectal and pancreatic cancers (CRC, PC) by characterizing circulating microparticles. Patients presenting with CRC, PC, inflammatory bowel or pancreatic diseases, and healthy subjects, were prospectively included. Circulating microparticles were analyzed by flow cytometry, combining the analysis of Annexin V-positive with characterization of their origin and determination of their procoagulant activities. We included 85, 36, 15, 18 and 20 patients presenting with CRC, PC, inflammatory bowel or pancreatic diseases, and healthy subjects, respectively. Here, we depict a specific signature, which differed between CRC, PC, associated inflammatory bowel and pancreatic diseases and healthy subjects. Furthermore, in patients with remission, this signature returned to the levels observed in associated inflammatory or healthy patients. Our results indicate that circulating microparticles differ depending on the evolution of a cancer. The analysis of the circulating microparticles reveals the specificity of the signature and can be used as a new complex biomarker reflecting the evolution of the disease.


Assuntos
Biomarcadores Tumorais/sangue , Micropartículas Derivadas de Células/metabolismo , Neoplasias Colorretais/sangue , Neoplasias Pancreáticas/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Colite/sangue , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Pancreatite Crônica/sangue , Estudos Prospectivos
11.
Blood ; 124(16): 2575-85, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25150292

RESUMO

Adenosine triphosphate (ATP) and its metabolite, adenosine, are key regulators of polymorphonuclear neutrophil (PMN) functions. PMNs have recently been implicated in the initiation of thrombosis. We investigated the role of ATP and adenosine in PMN activation and recruitment at the site of endothelial injury. Following binding to the injured vessel wall, PMNs are activated and release elastase. The recruitment of PMNs and the subsequent fibrin generation and thrombus formation are strongly affected in mice deficient in the P2X1-ATP receptor and in wild-type (WT) mice treated with CGS 21680, an agonist of the A2A adenosine receptor or NF449, a P2X1 antagonist. Infusion of WT PMNs into P2X1-deficient mice increases fibrin generation but not thrombus formation. Restoration of thrombosis requires infusion of both platelets and PMNs from WT mice. In vitro, ATP activates PMNs, whereas CGS 21680 prevents their binding to activated endothelial cells. These data indicate that adenosine triphosphate (ATP) contributes to polymorphonuclear neutrophil (PMN) activation leading to their adhesion at the site of laser-induced endothelial injury, a necessary step leading to the generation of fibrin, and subsequent platelet-dependent thrombus formation. Altogether, our study identifies previously unknown mechanisms by which ATP and adenosine are key molecules involved in thrombosis by regulating the activation state of PMNs.


Assuntos
Plaquetas/metabolismo , Neutrófilos/metabolismo , Receptores Purinérgicos P2X1/genética , Trombose/genética , Animais , Plaquetas/patologia , Fibrina/metabolismo , Deleção de Genes , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/patologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X1/metabolismo , Trombose/metabolismo , Trombose/patologia
12.
Rheumatol Int ; 36(8): 1099-103, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27324631

RESUMO

Polymyalgia rheumatica (PMR), a chronic inflammatory rheumatism, can be the expression of a paraneoplastic syndrome. The same clinical symptoms are frequently observed at the early stage of the benign and malignant forms. Here, our aim was to develop diagnostic tools to differentiate paraneoplastic PMR from essential PMR. We combined an 18FDG-PET and detection of circulating procoagulant microparticles (MPs), such as fibrin positive (FibMPs), by flow cytometry. Two patients with PMR and a similar profile were selected. In the two patients, the 18FDG-PET revealed a hypermetabolic focus. However, the concentrations of fibrin+/annexin+ microparticles detected were (10 times higher in one of the two patients, who was later found to have breast cancer. The association of 18FDG-PET and the detection of microparticle fibrin positives by flow cytometry allows separating essential PMR (hypermetabolism by 18FDG-PET, low FibMPs) from paraneoplastic PMR.


Assuntos
Micropartículas Derivadas de Células , Fibrina , Síndromes Paraneoplásicas/diagnóstico por imagem , Polimialgia Reumática/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Imagem Corporal Total/métodos , Idoso , Neoplasias da Mama/patologia , Neoplasias do Colo/patologia , Feminino , Fluordesoxiglucose F18 , Humanos , Pessoa de Meia-Idade , Síndromes Paraneoplásicas/patologia , Polimialgia Reumática/patologia
13.
Int J Cancer ; 136(2): 462-75, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24889539

RESUMO

Venous thromboembolism constitutes one of the main causes of death during the progression of a cancer. We previously demonstrated that tissue factor (TF)-bearing cancer cell-derived microparticles accumulate at the site of injury in mice developing a pancreatic cancer. The presence of these microparticles at the site of thrombosis correlates with the size of the platelet-rich thrombus. The objective of this study was to determine the involvement of TF expressed by cancer cell-derived microparticles on thrombosis associated with cancer. We observed that pancreatic cancer cell derived microparticles expressed TF, its inhibitor tissue factor pathway inhibitor (TFPI) as well as the integrins αvß1 and αvß3. In mice bearing a tumor under-expressing TF, a significant decrease in circulating TF activity associated with an increase bleeding time and a 100-fold diminished fibrin generation and platelet accumulation at the site of injury were observed. This was mainly due to the interaction of circulating cancer cell-derived microparticles expressing TFPI with activated platelets and fibrinogen. In an ectopic model of cancer, treatment of mice with Clopidogrel, an anti-platelet drug, decreased the size of the tumors and restored hemostasis by preventing the accumulation of cancer cell-derived microparticles at the site of thrombosis. In a syngeneic orthotopic model of pancreatic cancer Clopidogrel also significantly inhibited the development of metastases. Together, these results indicate that an anti-platelet strategy may efficiently treat thrombosis associated with cancer and reduce the progression of pancreatic cancer in mice.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Modelos Animais de Doenças , Integrinas/metabolismo , Selectina-P/metabolismo , Neoplasias Pancreáticas/prevenção & controle , Ativação Plaquetária , Trombose/prevenção & controle , Animais , Coagulação Sanguínea , Western Blotting , Clopidogrel , Citometria de Fluxo , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/patologia , Inibidores da Agregação Plaquetária/uso terapêutico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tromboplastina/antagonistas & inibidores , Tromboplastina/metabolismo , Trombose/etiologia , Trombose/patologia , Ticlopidina/análogos & derivados , Ticlopidina/uso terapêutico , Células Tumorais Cultivadas
14.
Hepatobiliary Pancreat Dis Int ; 14(4): 436-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26256090

RESUMO

BACKGROUND: Few studies have analyzed the effect of venous thromboembolism (VTE) events on the prognosis of pancreatic cancer, but their results were conflicting. The present study was undertaken to determine the effect of VTE on pancreatic adenocarcinoma (PA) outcomes. METHODS: All consecutive patients diagnosed with PA from May 2004 to January 2012 in a single oncology center were retrospectively studied. Clinical, radiological and histological data at time of diagnosis or within the first 3 months after surgery, including the presence (+) or absence (-) of VTE were collected. VTE was defined as radiological evidence of either pulmonary embolism (PE), deep venous thrombosis without infection or catheter-related thrombosis. PA with and without PE was compared for survival using the Kaplan-Meier method to estimate overall survival. RESULTS: Among 162 PA patients with a median follow-up of 15 (3-92) months after diagnosis, 28 demonstrated VTE (+). PA patients with and without PE were similar for age, American Society of Anesthesiologist score, body mass index, and history of treatment. The distribution of cancer stages was similar between the two groups VTE (+) and VTE (-). The median duration of survival was significantly worse in the VTE (+) group vs VTE (-) (12 vs 18 months, P=0.010). In multivariate analysis, the presence of VTE and surgical treatment were independent prognostic factors for overall survival. CONCLUSION: VTE (+) at time of diagnosis or within the first 3 months after surgery during treatment is an independent factor of poor prognosis in PA.


Assuntos
Adenocarcinoma/terapia , Neoplasias Pancreáticas/terapia , Embolia Pulmonar/epidemiologia , Tromboembolia Venosa/epidemiologia , Trombose Venosa/epidemiologia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Distribuição de Qui-Quadrado , Feminino , França/epidemiologia , Humanos , Estimativa de Kaplan-Meier , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Embolia Pulmonar/diagnóstico , Embolia Pulmonar/mortalidade , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/mortalidade , Trombose Venosa/diagnóstico , Trombose Venosa/mortalidade
15.
Blood ; 120(10): 2133-43, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22837532

RESUMO

For a long time, blood coagulation and innate immunity have been viewed as interrelated responses. Recently, the presence of leukocytes at the sites of vessel injury has been described. Here we analyzed interaction of neutrophils, monocytes, and platelets in thrombus formation after a laser-induced injury in vivo. Neutrophils immediately adhered to injured vessels, preceding platelets, by binding to the activated endothelium via leukocyte function antigen-1-ICAM-1 interactions. Monocytes rolled on a thrombus 3 to 5 minutes postinjury. The kinetics of thrombus formation and fibrin generation were drastically reduced in low tissue factor (TF) mice whereas the absence of factor XII had no effect. In vitro, TF was detected in neutrophils. In vivo, the inhibition of neutrophil binding to the vessel wall reduced the presence of TF and diminished the generation of fibrin and platelet accumulation. Injection of wild-type neutrophils into low TF mice partially restored the activation of the blood coagulation cascade and accumulation of platelets. Our results show that the interaction of neutrophils with endothelial cells is a critical step preceding platelet accumulation for initiating arterial thrombosis in injured vessels. Targeting neutrophils interacting with endothelial cells may constitute an efficient strategy to reduce thrombosis.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Neutrófilos/metabolismo , Tromboplastina/genética , Trombose/metabolismo , Animais , Coagulação Sanguínea , Plaquetas/citologia , Vasos Sanguíneos/lesões , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Adesão Celular , Comunicação Celular , Contagem de Células , Movimento Celular , Células Endoteliais/patologia , Endotélio Vascular/patologia , Fator XII/metabolismo , Deficiência do Fator XII/genética , Deficiência do Fator XII/metabolismo , Fibrina/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Lasers , Camundongos , Monócitos/citologia , Neutrófilos/citologia , Neutrófilos/transplante , Contagem de Plaquetas , Tromboplastina/deficiência
16.
Res Pract Thromb Haemost ; 7(7): 102209, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38077809

RESUMO

Background: The contribution of platelets in thrombosis within microcirculation has been extensively documented in the literature. We previously showed, in vivo, that platelet activation revealed by intracellular calcium mobilization was a crucial step in the growth of thrombi following laser-induced injury, a model of thromboinflammation. Objective: Our goal was to investigate the extent of platelet activation and the spatial distribution of platelets throughout a growing thrombus. Methods: We employed a multimodal, correlative microscopy approach and computational biology to study the state of platelets on a growing thrombus obtained after a laser injury. Results: We observed a reversible intracellular platelet calcium mobilization that correlates with the time a platelet resides during thrombus growth. Our bioinformatics analysis displayed the following 3 distinct platelet subpopulations resident within a thrombus: (1) resting, (2) partially activated, and (3) "fully" activated platelets. The spatial distribution of the platelet subpopulations in the thrombus creates a double gradient in both the transversal and longitudinal axis, with the maximal percentage of fully activated platelets close to the site of injury. However, these activated platelets did not express negative phospholipids. The injured endothelium was identified to play a vital role in activating the blood coagulation cascade in this model of thrombosis. Conclusion: Following a laser-induced injury, thrombi are formed by a gradient of activated platelets from the injury site to the periphery of the thrombus. These different activation states of platelets throughout the thrombi regulate the biomechanics of the thrombus. The injured endothelium, rather than platelets, was identified to play a key role in the activation of the blood coagulation cascade in this model of thromboinflammation.

17.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024121

RESUMO

Aggressive tumors often display mitochondrial dysfunction. Upon oxidative stress, mitochondria undergo fission through OMA1-mediated cleavage of the fusion effector OPA1. In yeast, a redox-sensing switch participates in OMA1 activation. 3D modeling of OMA1 comforted the notion that cysteine 403 might participate in a similar sensor in mammalian cells. Using prime editing, we developed a mouse sarcoma cell line in which OMA1 cysteine 403 was mutated in alanine. Mutant cells showed impaired mitochondrial responses to stress including ATP production, reduced fission, resistance to apoptosis, and enhanced mitochondrial DNA release. This mutation prevented tumor development in immunocompetent, but not nude or cDC1 dendritic cell-deficient, mice. These cells prime CD8+ lymphocytes that accumulate in mutant tumors, whereas their depletion delays tumor control. Thus, OMA1 inactivation increased the development of anti-tumor immunity. Patients with complex genomic soft tissue sarcoma showed variations in the level of OMA1 and OPA1 transcripts. High expression of OPA1 in primary tumors was associated with shorter metastasis-free survival after surgery, and low expression of OPA1, with anti-tumor immune signatures. Targeting OMA1 activity may enhance sarcoma immunogenicity.


Assuntos
GTP Fosfo-Hidrolases , Sarcoma , Camundongos , Animais , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Cisteína/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Mamíferos/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo
18.
Cancers (Basel) ; 14(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35159000

RESUMO

The first cause of death in cancer patients, after tumoral progression itself, is thrombo-embolic disease. This cancer-associated hypercoagulability state is known as Trousseau's syndrome, and the risk for developing thrombotic events differs according to cancer type and stage, as well as within patients. Massive platelet activation by tumor cells is the key mediator of thrombus formation in Trousseau's syndrome. In this literature review, we aimed to compare the interactions between cancer cells and platelets in three different cancer types, with low, medium and high thrombotic risk. We chose oral squamous cell carcinoma for the low-thrombotic-risk, colorectal adenocarcinoma for the medium-thrombotic-risk, and pancreatic carcinoma for the high-thrombotic-risk cancer type. We showcase that understanding these interactions is of the highest importance to find new biomarkers and therapeutic targets for cancer-associated thrombosis.

19.
Front Oncol ; 11: 704945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589424

RESUMO

Platelet function can be modified by cancer cells to support tumor growth, causing alterations in the delicate hemostatic equilibrium. Cancer-cell and platelet interactions are one of the main pillars of Trousseau's syndrome: a paraneoplastic syndrome with recurring and migrating episodes of thrombophlebitis. Altogether, this leads to a four-fold risk of thrombotic events in cancer patients, which in turn, portend a poor prognosis. We previously demonstrated that anti-P2RY12 drugs inhibit cancer-associated-thrombosis and formation of tumor metastasis in pancreatic cancer models. Here, we aimed to (1) compare the effects of aspirin and clopidogrel on pancreatic cancer prevention, (2) characterize the effects of clopidogrel (platelet P2RY12 inhibitor) on cancer-associated thrombosis and cancer growth in vivo, (3) determine the effect of P2RY12 across different digestive-tract cancers in vitro, and (4) analyze the expression pattern of P2RY12 in two different cancer types affecting the digestive system. Clopidogrel treatment resulted in better survival rates with smaller primary tumors and less metastasis than aspirin treatment. Clopidogrel was also more effective than aspirin at dissolving spontaneous endogenous thrombi in our orthotopic advanced cancer mouse model. P2RY12 expression gives pancreatic adenocarcinomas proliferative advantages. In conclusion, we propose the hypothesis that clopidogrel should be further studied to target and prevent Trousseau's syndrome; as well as diminish cancer growth and spread. However, more studies are required to determine the implicated pathways and effects of these drugs on cancer development.

20.
Biomedicines ; 9(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668375

RESUMO

Venous thrombo-embolism (VTE) disease is the second most common cause of mortality in cancer patients, and evaluation and prevention of thrombosis risk is essential. VTE-associated risk varies according to the type of tumor disease. Oral cancer is the most frequent type of head and neck cancer, and it represents approximately 2.1% of all cancers worldwide. Most tumors are squamous cell carcinomas and are mainly due to tobacco and alcohol abuse. VTE risk associated with oral squamous cell carcinoma (OSCC) is low. However, many studies have shown that OSCC has the following biological features of cancers associated with a high thrombosis risk: modified thrombosis and fibrinolysis mechanisms; strong expression of procoagulant proteins; secretion of procoagulant microparticles; and production of procoagulant cytokines. Using an original mouse model of tongue squamous cell carcinoma, our study aimed to clarify this paradoxical situation. First, we showed that OSCC tumors have a pro-aggregatory phenotype and a high local thrombosis risk. Second, we found that tongue tumor mice do not have an elevated systemic thrombosis risk (the risk of an "at distance" thrombosis event such as lower extremity deep venous thrombosis or pulmonary embolism) and even show a reduction in risk. Third, we demonstrated that tongue tumor mice show a reduction in platelet reactivity, which explains the low systemic thrombosis risk. Finally, we found that tongue tumor mice present granule pool deficiency, thereby explaining the reduction in platelet reactivity and systemic thrombosis risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA