Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 578(7795): 472-476, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31905366

RESUMO

Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2-SCC1 subunits of human cohesin. We report a crystal structure of SA2-SCC1 in complex with CTCF at a resolution of 2.7 Å, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL2,3. Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF.


Assuntos
Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Humanos , Ligantes , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Coesinas
2.
Nature ; 562(7728): 538-544, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30323286

RESUMO

The transcriptional co-activator p300 is a histone acetyltransferase (HAT) that is typically recruited to transcriptional enhancers and regulates gene expression by acetylating chromatin. Here we show that the activation of p300 directly depends on the activation and oligomerization status of transcription factor ligands. Using two model transcription factors, IRF3 and STAT1, we demonstrate that transcription factor dimerization enables the trans-autoacetylation of p300 in a highly conserved and intrinsically disordered autoinhibitory lysine-rich loop, resulting in p300 activation. We describe a crystal structure of p300 in which the autoinhibitory loop invades the active site of a neighbouring HAT domain, revealing a snapshot of a trans-autoacetylation reaction intermediate. Substrate access to the active site involves the rearrangement of an autoinhibitory RING domain. Our data explain how cellular signalling and the activation and dimerization of transcription factors control the activation of p300, and therefore explain why gene transcription is associated with chromatin acetylation.


Assuntos
Multimerização Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Domínio Catalítico , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Humanos , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/metabolismo , Ligantes , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Domínios Proteicos , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/metabolismo , Transcrição Gênica
3.
Mol Cell ; 62(2): 169-180, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105113

RESUMO

Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features.


Assuntos
Butiratos/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Espermatócitos/metabolismo , Acetilação , Animais , Sítios de Ligação , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Estudo de Associação Genômica Ampla , Histonas/química , Histonas/genética , Lisina , Masculino , Camundongos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Transcrição Gênica , Ativação Transcricional
4.
Proc Natl Acad Sci U S A ; 115(4): E601-E609, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29317535

RESUMO

Cytokine signaling through the JAK/STAT pathway controls multiple cellular responses including growth, survival, differentiation, and pathogen resistance. An expansion in the gene regulatory repertoire controlled by JAK/STAT signaling occurs through the interaction of STATs with IRF transcription factors to form ISGF3, a complex that contains STAT1, STAT2, and IRF9 and regulates expression of IFN-stimulated genes. ISGF3 function depends on selective interaction between IRF9, through its IRF-association domain (IAD), with the coiled-coil domain (CCD) of STAT2. Here, we report the crystal structures of the IRF9-IAD alone and in a complex with STAT2-CCD. Despite similarity in the overall structure among respective paralogs, the surface features of the IRF9-IAD and STAT2-CCD have diverged to enable specific interaction between these family members. We derive a model for the ISGF3 complex bound to an ISRE DNA element and demonstrate that the observed interface between STAT2 and IRF9 is required for ISGF3 function in cells.


Assuntos
Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator de Transcrição STAT2/metabolismo , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Janus Quinases/metabolismo , Camundongos , Mutação Puntual , Domínios Proteicos , Fator de Transcrição STAT2/genética , Transdução de Sinais
5.
EMBO J ; 35(13): 1465-82, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27225933

RESUMO

Nap1 is a histone chaperone involved in the nuclear import of H2A-H2B and nucleosome assembly. Here, we report the crystal structure of Nap1 bound to H2A-H2B together with in vitro and in vivo functional studies that elucidate the principles underlying Nap1-mediated H2A-H2B chaperoning and nucleosome assembly. A Nap1 dimer provides an acidic binding surface and asymmetrically engages a single H2A-H2B heterodimer. Oligomerization of the Nap1-H2A-H2B complex results in burial of surfaces required for deposition of H2A-H2B into nucleosomes. Chromatin immunoprecipitation-exonuclease (ChIP-exo) analysis shows that Nap1 is required for H2A-H2B deposition across the genome. Mutants that interfere with Nap1 oligomerization exhibit severe nucleosome assembly defects showing that oligomerization is essential for the chaperone function. These findings establish the molecular basis for Nap1-mediated H2A-H2B deposition and nucleosome assembly.


Assuntos
Histonas/química , Histonas/metabolismo , Proteína 1 de Modelagem do Nucleossomo/química , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Imunoprecipitação da Cromatina , Cristalografia por Raios X , Análise Mutacional de DNA , Modelos Moleculares , Proteína 1 de Modelagem do Nucleossomo/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Nucleic Acids Res ; 46(19): 9907-9917, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30239791

RESUMO

Eukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passage. The Histone chaperone Chromatin Assembly Factor-1 (CAF-1) interacts with the replisome and deposits H3-H4 directly onto newly synthesized DNA. Therefore, CAF-1 is important for the establishment and propagation of chromatin structure. The molecular mechanism by which CAF-1 mediates H3-H4 deposition has remained unclear. However, recent studies have revealed new insights into the architecture and stoichiometry of the trimeric CAF-1 complex and how it interacts with and deposits H3-H4 onto substrate DNA. The CAF-1 trimer binds to a single H3-H4 dimer, which induces a conformational rearrangement in CAF-1 promoting its interaction with substrate DNA. Two CAF-1•H3-H4 complexes co-associate on nucleosome-free DNA depositing (H3-H4)2 tetramers in the first step of nucleosome assembly. Here, we review the progress made in our understanding of CAF-1 structure, mechanism of action, and how CAF-1 contributes to chromatin dynamics during DNA replication.


Assuntos
Fator 1 de Modelagem da Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Histonas/metabolismo , Nucleossomos/metabolismo , Animais , Cromatina/metabolismo , Humanos , Chaperonas Moleculares/metabolismo
7.
Nat Chem Biol ; 13(1): 21-29, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27820805

RESUMO

Histone acetylation plays an important role in transcriptional activation. Histones are also modified by chemically diverse acylations that are frequently deposited by p300, a transcriptional coactivator that uses a number of different acyl-CoA cofactors. Here we report that while p300 is a robust acetylase, its activity gets weaker with increasing acyl-CoA chain length. Crystal structures of p300 in complex with propionyl-, crotonyl-, or butyryl-CoA show that the aliphatic portions of these cofactors are bound in the lysine substrate-binding tunnel in a conformation that is incompatible with substrate transfer. Lysine substrate binding is predicted to remodel the acyl-CoA ligands into a conformation compatible with acyl-chain transfer. This remodeling requires that the aliphatic portion of acyl-CoA be accommodated in a hydrophobic pocket in the enzymes active site. The size of the pocket and its aliphatic nature exclude long-chain and charged acyl-CoA variants, presumably explaining the cofactor preference for p300.


Assuntos
Coenzima A/química , Proteína p300 Associada a E1A/química , Coenzima A/metabolismo , Proteína p300 Associada a E1A/metabolismo , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica
8.
EMBO J ; 29(17): 2943-52, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20676058

RESUMO

In a subset of poorly differentiated and highly aggressive carcinoma, a chromosomal translocation, t(15;19)(q13;p13), results in an in-frame fusion of the double bromodomain protein, BRD4, with a testis-specific protein of unknown function, NUT (nuclear protein in testis). In this study, we show that, after binding to acetylated chromatin through BRD4 bromodomains, the NUT moiety of the fusion protein strongly interacts with and recruits p300, stimulates its catalytic activity, initiating cycles of BRD4-NUT/p300 recruitment and creating transcriptionally inactive hyperacetylated chromatin domains. Using a patient-derived cell line, we show that p300 sequestration into the BRD4-NUT foci is the principal oncogenic mechanism leading to p53 inactivation. Knockdown of BRD4-NUT released p300 and restored p53-dependent regulatory mechanisms leading to cell differentiation and apoptosis. This study demonstrates how the off-context activity of a testis-specific factor could markedly alter vital cellular functions and significantly contribute to malignant cell transformation.


Assuntos
Cromatina/metabolismo , Proteína p300 Associada a E1A/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Western Blotting , Células COS , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Microscopia de Fluorescência , Proteínas de Neoplasias , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética , Fatores de Transcrição/genética , Translocação Genética , Proteína Supressora de Tumor p53/metabolismo
9.
Nat Genet ; 56(8): 1678-1688, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060501

RESUMO

X chromosome inactivation (XCI) generates clonal heterogeneity within XX individuals. Combined with sequence variation between human X chromosomes, XCI gives rise to intra-individual clonal diversity, whereby two sets of clones express mutually exclusive sequence variants present on one or the other X chromosome. Here we ask whether such clones merely co-exist or potentially interact with each other to modulate the contribution of X-linked diversity to organismal development. Focusing on X-linked coding variation in the human STAG2 gene, we show that Stag2variant clones contribute to most tissues at the expected frequencies but fail to form lymphocytes in Stag2WT Stag2variant mouse models. Unexpectedly, the absence of Stag2variant clones from the lymphoid compartment is due not solely to cell-intrinsic defects but requires continuous competition by Stag2WT clones. These findings show that interactions between epigenetically diverse clones can operate in an XX individual to shape the contribution of X-linked genetic diversity in a cell-type-specific manner.


Assuntos
Cromossomos Humanos X , Genes Ligados ao Cromossomo X , Variação Genética , Inativação do Cromossomo X , Humanos , Animais , Inativação do Cromossomo X/genética , Camundongos , Cromossomos Humanos X/genética , Feminino , Proteínas de Ciclo Celular/genética , Antígenos Nucleares/genética , Linfócitos/metabolismo , Cromossomo X/genética , Coesinas
10.
Nat Struct Mol Biol ; 30(6): 853-859, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081319

RESUMO

In the early stages of mitosis, cohesin is released from chromosome arms but not from centromeres. The protection of centromeric cohesin by SGO1 maintains the sister chromatid cohesion that resists the pulling forces of microtubules until all chromosomes are attached in a bipolar manner to the mitotic spindle. Here we present the X-ray crystal structure of a segment of human SGO1 bound to a conserved surface of the cohesin complex. SGO1 binds to a composite interface formed by the SA2 and SCC1RAD21 subunits of cohesin. SGO1 shares this binding interface with CTCF, indicating that these distinct chromosomal regulators control cohesin through a universal principle. This interaction is essential for the localization of SGO1 to centromeres and protects centromeric cohesin against WAPL-mediated cohesin release. SGO1-cohesin binding is maintained until the formation of microtubule-kinetochore attachments and is required for faithful chromosome segregation and the maintenance of a stable karyotype.


Assuntos
Proteínas de Ciclo Celular , Centrômero , Humanos , Células HeLa , Centrômero/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinetocoros , Mitose , Segregação de Cromossomos , Cromátides/metabolismo
11.
J Autoimmun ; 39(3): 180-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22727274

RESUMO

Antibodies contribute to the pathogenesis of many chronic inflammatory diseases, including autoimmune disorders and allergies. They are secreted by proliferating plasmablasts, short-lived plasma cells and non-proliferating, long-lived memory plasma cells. Memory plasma cells refractory to immunosuppression are critical for the maintenance of both protective and pathogenic antibody titers. Here, we studied the response of plasma cells in spleen, bone marrow and inflamed kidneys of lupus-prone NZB/W mice to high-dose dexamethasone and/or cyclophosphamide. BrdU+, dividing plasmablasts and short-lived plasma cells in the spleen were depleted while BrdU- memory plasma cells survived. In contrast, all bone marrow plasma cells including anti-DNA secreting cells were refractory to both drugs. Unlike bone marrow and spleen, which showed a predominance of IgM-secreting plasma cells, inflamed kidneys mainly accommodated IgG-secreting plasma cells, including anti-DNA secreting cells, some of which survived the treatments. These results indicate that the bone marrow is the major site of memory plasma cells resistant to treatment with glucocorticoids and anti-proliferative drugs, and that inflamed tissues and secondary lymphoid organs can contribute to the autoreactive plasma cell memory. Therefore, new strategies targeting autoreactive plasma cell memory should be considered. This could be the key to finding a curative approach to the treatment of chronic inflammatory autoantibody-mediated diseases.


Assuntos
Medula Óssea/imunologia , Ciclofosfamida/uso terapêutico , Dexametasona/uso terapêutico , Imunossupressores/uso terapêutico , Nefrite Lúpica/tratamento farmacológico , Plasmócitos/imunologia , Animais , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Autoimunidade/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Bromodesoxiuridina/administração & dosagem , Ciclofosfamida/farmacologia , DNA/imunologia , Dexametasona/farmacologia , Modelos Animais de Doenças , Feminino , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Imunoglobulina M/biossíntese , Imunoglobulina M/imunologia , Memória Imunológica/efeitos dos fármacos , Imunossupressores/farmacologia , Rim/efeitos dos fármacos , Rim/imunologia , Rim/patologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos NZB , Especificidade de Órgãos , Plasmócitos/efeitos dos fármacos , Plasmócitos/patologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia
12.
Nat Commun ; 13(1): 7759, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522330

RESUMO

Histone modifications are deposited by chromatin modifying enzymes and read out by proteins that recognize the modified state. BRD4-NUT is an oncogenic fusion protein of the acetyl lysine reader BRD4 that binds to the acetylase p300 and enables formation of long-range intra- and interchromosomal interactions. We here examine how acetylation reading and writing enable formation of such interactions. We show that NUT contains an acidic transcriptional activation domain that binds to the TAZ2 domain of p300. We use NMR to investigate the structure of the complex and found that the TAZ2 domain has an autoinhibitory role for p300. NUT-TAZ2 interaction or mutations found in cancer that interfere with autoinhibition by TAZ2 allosterically activate p300. p300 activation results in a self-organizing, acetylation-dependent feed-forward reaction that enables long-range interactions by bromodomain multivalent acetyl-lysine binding. We discuss the implications for chromatin organisation, gene regulation and dysregulation in disease.


Assuntos
Lisina , Proteínas Nucleares , Acetilação , Proteínas Nucleares/metabolismo , Lisina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina
13.
Curr Opin Struct Biol ; 18(2): 236-42, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18206362

RESUMO

The interferon-beta (IFN-beta) enhanceosome is a paradigm for understanding the role of transcription factor complexes in eukaryotic signal integration. Recent structural studies provide a complete atomic model of the enhanceosome at the protein-DNA interface. The composite model shows how binding of eight transcription factors to enhancer DNA creates a continuous recognition surface. The extensive overlap of individual binding sites creates a composite element that ensures that the enhancer operates as a single unit of regulation. The absence of major protein-protein interfaces between the transcription factors suggests that cooperative binding occurs through a combination of binding-induced conformational changes in DNA structure and specific interactions with coactivator proteins such as CBP/p300. Contacts with virtually every nucleotide explain why the enhancer is evolutionary conserved in mammalian genomes.


Assuntos
Elementos Facilitadores Genéticos/genética , Interferon beta/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína
14.
Structure ; 17(5): 769-77, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19446532

RESUMO

The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a "crossover" binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.


Assuntos
Sequência Rica em At , Proteínas de Bactérias/química , Proteínas Repressoras/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , DNA/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Flagelina/química , Flagelina/genética , Flagelina/metabolismo , Sequências Hélice-Volta-Hélice , Listeria monocytogenes/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Conformação Proteica , Proteínas Repressoras/metabolismo
15.
Nat Commun ; 12(1): 4618, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326347

RESUMO

The transcriptional co-activator and acetyltransferase p300 is required for fundamental cellular processes, including differentiation and growth. Here, we report that p300 forms phase separated condensates in the cell nucleus. The phase separation ability of p300 is regulated by autoacetylation and relies on its catalytic core components, including the histone acetyltransferase (HAT) domain, the autoinhibition loop, and bromodomain. p300 condensates sequester chromatin components, such as histone H3 tail and DNA, and are amplified through binding of p300 to the nucleosome. The catalytic HAT activity of p300 is decreased due to occlusion of the active site in the phase separated droplets, a large portion of which co-localizes with chromatin regions enriched in H3K27me3. Our findings suggest a model in which p300 condensates can act as a storage pool of the protein with reduced HAT activity, allowing p300 to be compartmentalized and concentrated at poised or repressed chromatin regions.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteína p300 Associada a E1A/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Células Cultivadas , Proteína p300 Associada a E1A/química , Humanos , Domínios Proteicos
16.
Ann Rheum Dis ; 69(7): 1370-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19854711

RESUMO

BACKGROUND: Dendritic cells (DCs) have a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). Reduced numbers of blood DCs and the accumulation of DCs at inflammatory sites have been observed in SLE. One crucial feature of DCs is their ability to migrate. OBJECTIVE: To analyse the maturation/activation state and the migratory capacity of different DC precursor subsets in SLE to further elucidate their role in autoimmunity. METHODS: Plasmacytoid DCs (pDCs), myeloid DCs (mDCs) and monocytes from patients with SLE, healthy volunteers and healthy volunteers immunised with tetanus/diphtheria were examined by flow cytometry for expression of subset-specific antigens (BDCA-2, CD11c, CD14, HLA-DR), activation/maturation markers (CD83, CD86, CD40, BLyS) and chemokine receptors (CCR1, CCR5, CCR7, ChemR23). Additionally, migratory capacity to chemokine receptors was investigated in vitro using the chemokines RANTES, CCL19 and chemerin. RESULTS: SLE monocytes and mDCs had higher CD86 and B-lymphocyte stimulatory factor (BLyS) expression levels. ChemR23 expression was lower in SLE pDCs and mDCs. Basal and CCL19-specific migration levels were higher in SLE pDCs. Altered DC function in SLE had no correlative changes in chemokine receptor expression, whereas immunisation-induced blood DC migration patterns in healthy donors were accompanied by changes in chemokine receptor expression. CONCLUSIONS: The phenotypic and migratory disturbances observed in SLE blood DCs could result in altered distribution of DCs in peripheral tissues, contributing to dysregulated immune responses and autoimmunity.


Assuntos
Células Dendríticas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptores de Quimiocinas/sangue , Adulto , Autoimunidade/imunologia , Diferenciação Celular/imunologia , Quimiotaxia/imunologia , Toxina Diftérica/imunologia , Feminino , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem , Pessoa de Meia-Idade , Monócitos/imunologia , Toxina Tetânica/imunologia , Adulto Jovem
18.
Nat Struct Mol Biol ; 27(3): 233-239, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066964

RESUMO

Genome regulation requires control of chromosome organization by SMC-kleisin complexes. The cohesin complex contains the Smc1 and Smc3 subunits that associate with the kleisin Scc1 to form a ring-shaped complex that can topologically engage chromatin to regulate chromatin structure. Release from chromatin involves opening of the ring at the Smc3-Scc1 interface in a reaction that is controlled by acetylation and engagement of the Smc ATPase head domains. To understand the underlying molecular mechanisms, we have determined the 3.2-Šresolution cryo-electron microscopy structure of the ATPγS-bound, heterotrimeric cohesin ATPase head module and the 2.1-Šresolution crystal structure of a nucleotide-free Smc1-Scc1 subcomplex from Saccharomyces cerevisiae and Chaetomium thermophilium. We found that ATP-binding and Smc1-Smc3 heterodimerization promote conformational changes within the ATPase that are transmitted to the Smc coiled-coil domains. Remodeling of the coiled-coil domain of Smc3 abrogates the binding surface for Scc1, thus leading to ring opening at the Smc3-Scc1 interface.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Chaetomium/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Clonagem Molecular , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Coesinas
19.
J Med Chem ; 63(2): 601-612, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31859507

RESUMO

The serine/threonine kinase TBK1 (TANK-binding kinase 1) and its homologue IKKε are noncanonical members of the inhibitor of the nuclear factor κB (IκB) kinase family. These kinases play important roles in multiple cellular pathways and, in particular, in inflammation. Herein, we describe our investigations on a family of benzimidazoles and the identification of the potent and highly selective TBK1/IKKε inhibitor BAY-985. BAY-985 inhibits the cellular phosphorylation of interferon regulatory factor 3 and displays antiproliferative efficacy in the melanoma cell line SK-MEL-2 but showed only weak antitumor activity in the SK-MEL-2 human melanoma xenograft model.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Fosforilação , Relação Estrutura-Atividade , Especificidade por Substrato
20.
Elife ; 72018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30109982

RESUMO

The cohesin ring complex is required for numerous chromosomal transactions including sister chromatid cohesion, DNA damage repair and transcriptional regulation. How cohesin engages its chromatin substrate has remained an unresolved question. We show here, by determining a crystal structure of the budding yeast cohesin HEAT-repeat subunit Scc3 bound to a fragment of the Scc1 kleisin subunit and DNA, that Scc3 and Scc1 form a composite DNA interaction module. The Scc3-Scc1 subcomplex engages double-stranded DNA through a conserved, positively charged surface. We demonstrate that this conserved domain is required for DNA binding by Scc3-Scc1 in vitro, as well as for the enrichment of cohesin on chromosomes and for cell viability. These findings suggest that the Scc3-Scc1 DNA-binding interface plays a central role in the recruitment of cohesin complexes to chromosomes and therefore for cohesin to faithfully execute its functions during cell division.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/administração & dosagem , Proteínas de Ciclo Celular/química , Divisão Celular/genética , Cromatina/química , Proteínas Cromossômicas não Histona/administração & dosagem , Proteínas Cromossômicas não Histona/química , Cromossomos/química , DNA/química , DNA/genética , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos , Proteínas de Saccharomyces cerevisiae/química , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA