Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(6): 1031-1040, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078286

RESUMO

BACKGROUND: Current clinical imaging of thromboembolic diseases often relies on indirect detection of thrombi, which may delay diagnosis and ultimately the institution of beneficial, potentially lifesaving treatment. Therefore, the development of targeting tools that facilitate the rapid, specific, and direct imaging of thrombi using molecular imaging is highly sought after. One potential molecular target is FXIIa (factor XIIa), which initiates the intrinsic coagulation pathway but also activates the kallikrein-kinin system, thereby initiating coagulation and inflammatory/immune responses. As FXII (factor XII) is dispensable for normal hemostasis, its activated form (FXIIa) represents an ideal molecular target for diagnostic and therapeutic approaches, the latter combining diagnosis/identification of thrombi and effective antithrombotic therapy. METHODS: We conjugated an FXIIa-specific antibody, 3F7, to a near-infrared (NIR) fluorophore and demonstrated binding to FeCl3-induced carotid thrombosis with 3-dimensional fluorescence emission computed tomography/computed tomography and 2-dimensional fluorescence imaging. We further demonstrated ex vivo imaging of thromboplastin-induced pulmonary embolism and detection of FXIIa in human thrombi produced in vitro. RESULTS: We demonstrated imaging of carotid thrombosis by fluorescence emission computed tomography/computed tomography and measured a significant fold increase in signal between healthy and control vessels from mice injected with 3F7-NIR compared with mice injected with nontargeted probe (P=0.002) ex vivo. In a model of pulmonary embolism, we measured increased NIR signal in lungs from mice injected with 3F7-NIR compared with mice injected with nontargeted probe (P=0.0008) and healthy lungs from mice injected with 3F7-NIR (P=0.021). CONCLUSIONS: Overall, we demonstrate that FXIIa targeting is highly suitable for the specific detection of venous and arterial thrombi. This approach will allow direct, specific, and early imaging of thrombosis in preclinical imaging modalities and may facilitate monitoring of antithrombotic treatment in vivo.


Assuntos
Trombose das Artérias Carótidas , Embolia Pulmonar , Trombose , Camundongos , Humanos , Animais , Coagulação Sanguínea , Trombose/diagnóstico por imagem , Fator XII/metabolismo , Fator XIIa/metabolismo , Imagem Molecular
2.
J Biol Chem ; 296: 100200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334893

RESUMO

Human complement receptor 1 (HuCR1) is a pivotal regulator of complement activity, acting on all three complement pathways as a membrane-bound receptor of C3b/C4b, C3/C5 convertase decay accelerator, and cofactor for factor I-mediated cleavage of C3b and C4b. In this study, we sought to identify a minimal soluble fragment of HuCR1, which retains the complement regulatory activity of the wildtype protein. To this end, we generated recombinant, soluble, and truncated versions of HuCR1 and compared their ability to inhibit complement activation in vitro using multiple assays. A soluble form of HuCR1, truncated at amino acid 1392 and designated CSL040, was found to be a more potent inhibitor than all other truncation variants tested. CSL040 retained its affinity to both C3b and C4b as well as its cleavage and decay acceleration activity and was found to be stable under a range of buffer conditions. Pharmacokinetic studies in mice demonstrated that the level of sialylation is a major determinant of CSL040 clearance in vivo. CSL040 also showed an improved pharmacokinetic profile compared with the full extracellular domain of HuCR1. The in vivo effects of CSL040 on acute complement-mediated kidney damage were tested in an attenuated passive antiglomerular basement membrane antibody-induced glomerulonephritis model. In this model, CSL040 at 20 and 60 mg/kg significantly attenuated kidney damage at 24 h, with significant reductions in cellular infiltrates and urine albumin, consistent with protection from kidney damage. CSL040 thus represents a potential therapeutic candidate for the treatment of complement-mediated disorders.


Assuntos
Ativação do Complemento , Receptores de Complemento 3b/imunologia , Animais , Linhagem Celular , Complemento C3b/imunologia , Complemento C4b/imunologia , Feminino , Glomerulonefrite/imunologia , Glomerulonefrite/terapia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Complemento 3b/química , Receptores de Complemento 3b/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico
3.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L258-L272, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873957

RESUMO

The mechanisms driving idiopathic pulmonary fibrosis (IPF) remain undefined, however it is postulated that coagulation imbalances may play a role. The impact of blood-derived clotting factors, including factor XII (FXII) has not been investigated in the context of IPF. Plasma levels of FXII were measured by ELISA in patients with IPF and in age-matched healthy donors. Expression of FXII in human lung tissue was quantified using multiplex immunohistochemistry and Western blotting. Mechanistic investigation of FXII activity was assessed in vitro on primary lung fibroblasts using qPCR and specific receptor/FXII inhibition. The functional outcome of FXII on fibroblast migration was examined by high-content image analysis. Compared with 35 healthy donors, plasma levels of FXII were not higher in patients with IPF (n = 27, P > 0.05). Tissue FXII was elevated in IPF (n = 11) and increased numbers of FXII+ cells were found in IPF (n = 8) lung tissue compared with nondiseased controls (n = 6, P < 0.0001). Activated FXII induced IL6 mRNA and IL-6 protein in fibroblasts that was blocked by anti-FXII antibody, CSL312. FXII induced IL-6 production via PAR-1 and NF-κB. FXII induced migration of fibroblasts in a concentration-dependent manner. FXII is normally confined to the circulation but it leaks from damaged vessels into the lung interstitium in IPF where it 1) induces IL-6 production and 2) enhances migration of resident fibroblasts, critical events that drive chronic inflammation and therefore, contribute to fibrotic disease progression. Targeting FXII-induced fibroblastic processes in IPF may ameliorate pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Fator XII/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo
4.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955604

RESUMO

Monoclonal antibodies (mAbs) are one of the most successful and versatile protein-based pharmaceutical products used to treat multiple pathological conditions. The remarkable specificity of mAbs and their affinity for biological targets has led to the implementation of mAbs in the therapeutic regime of oncogenic, chronic inflammatory, cardiovascular, and infectious diseases. Thus, the discovery of novel mAbs with defined functional activities is of crucial importance to expand our ability to address current and future clinical challenges. In vitro, antigen-driven affinity selection employing phage display biopanning is a commonly used technique to isolate mAbs. The success of biopanning is dependent on the quality and the presentation format of the antigen, which is critical when isolating mAbs against membrane protein targets. Here, we provide a comprehensive investigation of two established panning strategies, surface-tethering of a recombinant extracellular domain and cell-based biopanning, to examine the impact of antigen presentation on selection outcomes with regards to the isolation of positive mAbs with functional potential against a proof-of-concept type I cell surface receptor. Based on the higher sequence diversity of the resulting antibody repertoire, presentation of a type I membrane protein in soluble form was more advantageous over presentation in cell-based format. Our results will contribute to inform and guide future antibody discovery campaigns against cell surface proteins.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Anticorpos Monoclonais , Bacteriófagos/genética , Bioprospecção , Técnicas de Visualização da Superfície Celular/métodos , Proteínas de Membrana
5.
Clin Sci (Lond) ; 134(9): 1049-1061, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32309850

RESUMO

Abdominal aortic aneurysm (AAA) is an important cause of mortality in older adults. Chronic inflammation and excessive matrix remodelling are considered important in AAA pathogenesis. Kinins are bioactive peptides important in regulating inflammation. Stimulation of the kinin B2 receptor has been previously reported to promote AAA development and rupture in a mouse model. The endogenous B2 receptor agonist, bradykinin, is generated from the kallikrein-kinin system following activation of plasma kallikrein by Factor XII (FXII). In the current study whole-body FXII deletion, or neutralisation of activated FXII (FXIIa), inhibited expansion of the suprarenal aorta (SRA) of apolipoprotein E-deficient mice in response to angiotensin II (AngII) infusion. FXII deficiency or FXIIa neutralisation led to decreased aortic tumor necrosis factor-α-converting enzyme (TACE/a disintegrin and metalloproteinase-17 (aka tumor necrosis factor-α-converting enzyme) (ADAM-17)) activity, plasma kallikrein concentration, and epithelial growth factor receptor (EGFR) phosphorylation compared with controls. FXII deficiency or neutralisation also reduced Akt1 and Erk1/2 phosphorylation and decreased expression and levels of active matrix metalloproteinase (Mmp)-2 and Mmp-9. The findings suggest that FXII, kallikrein, ADAM-17, and EGFR are important molecular mediators by which AngII induces aneurysm in apolipoprotein E-deficient mice. This could be a novel pathway to target in the design of drugs to limit AAA progression.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/patologia , Apolipoproteínas E/deficiência , Fator XII/antagonistas & inibidores , Proteína ADAM17/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/metabolismo , Modelos Animais de Doenças , Fator XII/metabolismo , Camundongos
6.
J Immunol ; 200(8): 2542-2553, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29531170

RESUMO

Activation of Fc receptors and complement by immune complexes is a common important pathogenic trigger in many autoimmune diseases and so blockade of these innate immune pathways may be an attractive target for treatment of immune complex-mediated pathomechanisms. High-dose IVIG is used to treat autoimmune and inflammatory diseases, and several studies demonstrate that the therapeutic effects of IVIG can be recapitulated with the Fc portion. Further, recent data indicate that recombinant multimerized Fc molecules exhibit potent anti-inflammatory properties. In this study, we investigated the biochemical and biological properties of an rFc hexamer (termed Fc-µTP-L309C) generated by fusion of the IgM µ-tailpiece to the C terminus of human IgG1 Fc. Fc-µTP-L309C bound FcγRs with high avidity and inhibited FcγR-mediated effector functions (Ab-dependent cell-mediated cytotoxicity, phagocytosis, respiratory burst) in vitro. In addition, Fc-µTP-L309C prevented full activation of the classical complement pathway by blocking C2 cleavage, avoiding generation of inflammatory downstream products (C5a or sC5b-9). In vivo, Fc-µTP-L309C suppressed inflammatory arthritis in mice when given therapeutically at approximately a 10-fold lower dose than IVIG, which was associated with reduced inflammatory cytokine production and complement activation. Likewise, administration of Fc-µTP-L309C restored platelet counts in a mouse model of immune thrombocytopenia. Our data demonstrate a potent anti-inflammatory effect of Fc-µTP-L309C in vitro and in vivo, likely mediated by blockade of FcγRs and its unique inhibition of complement activation.


Assuntos
Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo/imunologia , Doenças Autoimunes/imunologia , Proteínas do Sistema Complemento/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Receptores Fc/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular , Ativação do Complemento/imunologia , Humanos , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/imunologia , Receptores de IgG/imunologia
7.
J Immunol ; 197(11): 4392-4402, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27807194

RESUMO

G-CSF is a hemopoietic growth factor that has a role in steady state granulopoiesis, as well as in mature neutrophil activation and function. G-CSF- and G-CSF receptor-deficient mice are profoundly protected in several models of rheumatoid arthritis, and Ab blockade of G-CSF also protects against disease. To further investigate the actions of blocking G-CSF/G-CSF receptor signaling in inflammatory disease, and as a prelude to human studies of the same approach, we developed a neutralizing mAb to the murine G-CSF receptor, which potently antagonizes binding of murine G-CSF and thereby inhibits STAT3 phosphorylation and G-CSF receptor signaling. Anti-G-CSF receptor rapidly halted the progression of established disease in collagen Ab-induced arthritis in mice. Neutrophil accumulation in joints was inhibited, without rendering animals neutropenic, suggesting an effect of G-CSF receptor blockade on neutrophil homing to inflammatory sites. Consistent with this, neutrophils in the blood and arthritic joints of anti-G-CSF receptor-treated mice showed alterations in cell adhesion receptors, with reduced CXCR2 and increased CD62L expression. Furthermore, blocking neutrophil trafficking with anti-G-CSF receptor suppressed local production of proinflammatory cytokines (IL-1ß, IL-6) and chemokines (KC, MCP-1) known to drive tissue damage. Differential gene expression analysis of joint neutrophils showed a switch away from an inflammatory phenotype following anti-G-CSF receptor therapy in collagen Ab-induced arthritis. Importantly, G-CSF receptor blockade did not adversely affect viral clearance during influenza infection in mice. To our knowledge, we describe for the first time the effect of G-CSF receptor blockade in a therapeutic model of inflammatory joint disease and provide support for pursuing this therapeutic approach in treating neutrophil-associated inflammatory diseases.


Assuntos
Anticorpos Neutralizantes/farmacologia , Artrite Experimental/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Receptores de Fator Estimulador de Colônias de Granulócitos/antagonistas & inibidores , Animais , Artrite Experimental/genética , Artrite Experimental/imunologia , Artrite Experimental/patologia , Citocinas/genética , Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/imunologia , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Articulações/imunologia , Articulações/patologia , Masculino , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Neutrófilos/patologia , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/imunologia
8.
Am J Respir Crit Care Med ; 196(2): 186-199, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28005404

RESUMO

RATIONALE: Acute respiratory distress syndrome is characterized by alveolar epithelial cell injury, edema formation, and intraalveolar contact phase activation. OBJECTIVES: To explore whether C1 esterase inhibitor (C1INH), an endogenous inhibitor of the contact phase, may protect from lung injury in vivo and to decipher the possible underlying mechanisms mediating protection. METHODS: The ability of C1INH to control the inflammatory processes was studied in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: Here, we demonstrate that application of C1INH alleviates bleomycin-induced lung injury via direct interaction with extracellular histones. In vitro, C1INH was found to bind all histone types. Interaction with histones was independent of its protease inhibitory activity, as demonstrated by the use of reactive-center-cleaved C1INH, but dependent on its glycosylation status. C1INH sialylated-N- and -O-glycans were not only essential for its interaction with histones but also to protect against histone-induced cell death. In vivo, histone-C1INH complexes were detected in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome and multiple models of lung injury. Furthermore, reactive-center-cleaved C1INH attenuated pulmonary damage evoked by intravenous histone instillation. CONCLUSIONS: Collectively, C1INH administration provides a new therapeutic option for disorders associated with histone release.


Assuntos
Proteína Inibidora do Complemento C1/farmacologia , Histonas/metabolismo , Lesão Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar , Proteína Inibidora do Complemento C1/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
9.
Br J Haematol ; 173(5): 769-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27018425

RESUMO

Haemostasis including blood coagulation is initiated upon vessel wall injury and indispensable to limit excessive blood loss. However, unregulated pathological coagulation may lead to vessel occlusion, causing thrombotic disorders, most notably myocardial infarction and stroke. Furthermore, blood exposure to foreign surfaces activates the intrinsic pathway of coagulation. Hence, various clinical scenarios, such as extracorporeal membrane oxygenation, require robust anticoagulation consequently leading to an increased bleeding risk. This study aimed to further assess the antithrombotic efficacy of the activated factor XII (FXIIa) inhibitor, rHA-Infestin-4, in several thrombosis models. In mice, rHA-Infestin-4 decreased occlusion rates in the mechanically-induced arterial (Folt's) and the FeCl3 -induced venous thrombosis model. rHA-Infestin-4 also protected from FeCl3 -induced arterial thrombosis and from stasis-prompted venous thrombosis in rabbits. Furthermore, rHA-Infestin-4 prevented occlusion in the arterio-venous shunt model in mice and rabbits where thrombosis was induced via a foreign surface. In contrast to heparin, the haemostatic capacity in rabbits was unaffected by rHA-Infestin-4. Using rodent and non-rodent species, our data demonstrate that the FXIIa inhibitor rHA-Infestin-4 decreased arterial, venous and foreign surface-induced thrombosis without affecting physiological haemostasis. Hence, we provide further evidence that targeting FXIIa represents a potent yet safe antithrombotic treatment approach, especially in foreign surface-triggered thrombosis.


Assuntos
Fator XIIa/antagonistas & inibidores , Proteínas de Insetos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Albumina Sérica/farmacologia , Trombose/tratamento farmacológico , Animais , Arteriopatias Oclusivas/tratamento farmacológico , Arteriopatias Oclusivas/etiologia , Modelos Animais de Doenças , Fibrinolíticos/farmacologia , Hemostasia/efeitos dos fármacos , Proteínas de Insetos/uso terapêutico , Cinética , Camundongos , Coelhos , Proteínas Recombinantes de Fusão/uso terapêutico , Albumina Sérica/uso terapêutico , Albumina Sérica Humana , Trombose/etiologia , Resultado do Tratamento , Trombose Venosa/tratamento farmacológico , Trombose Venosa/etiologia
10.
Nucleic Acids Res ; 42(4): e26, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24253301

RESUMO

We describe a novel cloning method, referred to as insert-tagged (InTag) positive selection, for the rapid one-step reformatting of phage-displayed antibody fragments to full-length immunoglobulin Gs (IgGs). InTag positive selection enables recombinant clones of interest to be directly selected without cloning background, bypassing the laborious process of plating out cultures and colony screening and enabling the cloning procedure to be automated and performed in a high-throughput format. This removes a significant bottleneck in the functional screening of phage-derived antibody candidates and enables a large number of clones to be directly reformatted into IgG without the intermediate step of Escherichia coli expression and testing of soluble antibody fragments. The use of InTag positive selection with the Dyax Fab-on-phage antibody library is demonstrated, and optimized methods for the small-scale transient expression of IgGs at high levels are described. InTag positive selection cloning has the potential for wide application in high-throughput DNA cloning involving multiple inserts, markedly improving the speed and quality of selections from protein libraries.


Assuntos
Técnicas de Visualização da Superfície Celular , Imunoglobulina G/genética , Fragmentos de Imunoglobulinas/genética , Imunoglobulina G/biossíntese , Transfecção
12.
Methods Mol Biol ; 2702: 433-449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679634

RESUMO

We have previously published protocols for high-throughput IgG reformatting and expression, that enable rapid reformatting of phage-displayed antibody Fab fragments into a single dual expression vector for full IgG expression in Expi293F cells (Chen et al. Nucleic Acids Res 42:e26, 2014; Chen et al. Methods in Molecular Biology, vol 1701, 2018). However, when working with phage clones from a naïve library containing highly diverse N-terminal sequences, where the 5' PCR primers bind, the PCR step can become cumbersome. To overcome this limitation, we have investigated and found that the C-terminal 7 amino acid residues of the human antibody VH1 secretion signal can be replaced with those from ompA or pelB bacterial signals to form hybrid signal sequences that can drive strong IgG expression in Expi293F cells. The use of such hybrid signals allows any Fab fragment in the library to be amplified and cloned into the IgG expression vector using only a single 5' PCR primer targeting the bacterial secretion signal of the light or heavy chain, thus dramatically simplifying the IgG reformatting workflow.


Assuntos
Bacteriófagos , Humanos , Secreções Corporais , Técnicas de Visualização da Superfície Celular , Fragmentos Fab das Imunoglobulinas/genética , Tecnologia , Imunoglobulina G/genética
13.
MAbs ; 15(1): 2163459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36628468

RESUMO

Hageman factor (FXII) is an essential component in the intrinsic coagulation cascade and a therapeutic target for the prophylactic treatment of hereditary angioedema (HAE). CSL312 (garadacimab) is a novel high-affinity human antibody capable of blocking activated FXII activity that is currently undergoing Phase 3 clinical trials in HAE. Structural studies using hydrogen/deuterium exchange coupled to mass spectrometry revealed evidence of interaction between the antibody and regions surrounding the S1 specificity pocket of FXII, including the 99-loop, 140-loop, 180-loop, and neighboring regions. We propose complementarity-determining regions (CDRs) in heavy-chain CDR2 and CDR3 as potential paratopes on garadacimab, and the 99-loop, 140-loop, 180-loop, and 220-loop as binding sites on the beta chain of activated FXII (ß-FXIIa).


Assuntos
Fator XII , Espectrometria de Massa com Troca Hidrogênio-Deutério , Humanos , Fator XII/química , Fator XII/metabolismo , Hidrogênio/química , Sítios de Ligação , Sítios de Ligação de Anticorpos
14.
Clin Transl Sci ; 15(3): 626-637, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34859955

RESUMO

Factor XII (FXII) is the principal initiator of the plasma contact system and has proinflammatory and prothrombotic activities. This single-center, first-in-human phase I study aimed to assess the safety and tolerability of single escalating doses of garadacimab, a monoclonal antibody that specifically inhibits activated FXII (FXIIa), in healthy male volunteers. Volunteers were randomized to eight cohorts, with intravenous (i.v.) doses of 0.1, 0.3, 1, 3, and 10 mg/kg and subcutaneous (s.c.) doses of 1, 3, and 10 mg/kg. Six volunteers in each cohort received garadacimab or placebo in a ratio of 2:1. Follow-up for safety lasted 85 days after dosing. Blood samples were collected throughout for pharmacokinetic/pharmacodynamic analysis. Forty-eight volunteers were enrolled: 32 received garadacimab and 16 received placebo. Most volunteers experienced at least one treatment-emergent adverse event (TEAE), predominantly grade 1. No serious TEAEs, deaths, or TEAEs leading to discontinuation were reported. No volunteers tested positive for garadacimab antidrug antibodies. Garadacimab plasma concentrations increased in a dose-dependent manner. Sustained inhibition of FXIIa-mediated kallikrein activity beyond day 28 resulted from 3 and 10 mg/kg garadacimab (i.v. and s.c.). A dose-dependent increase in activated partial thromboplastin time with no change in prothrombin time was demonstrated. Garadacimab (single-dose i.v. and s.c.) was well-tolerated in healthy volunteers. Dose-dependent increases in plasma concentration and pharmacodynamic effects in relevant kinin and coagulation pathways were observed. These results support the clinical development of garadacimab, including in phase II studies in hereditary angioedema and coronavirus disease 2019 (COVID-19).


Assuntos
Angioedemas Hereditários , COVID-19 , Anticorpos Monoclonais/efeitos adversos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Fator XIIa , Humanos , Masculino
15.
Thromb Haemost ; 122(2): 196-207, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34619795

RESUMO

BACKGROUND: 3F7 is a monoclonal antibody targeting the enzymatic pocket of activated factor XII (FXIIa), thereby inhibiting its catalytic activity. Given the emerging role of FXIIa in promoting thromboinflammation, along with its apparent redundancy for hemostasis, the selective inhibition of FXIIa represents a novel and highly attractive approach targeting pathogenic processes that cause thromboinflammation-driven cardiovascular diseases. METHODS: The effects of FXIIa inhibition were investigated using three distinct mouse models of cardiovascular disease-angiotensin II-induced abdominal aortic aneurysm (AAA), an ApoE-/- model of atherosclerosis, and a tandem stenosis model of atherosclerotic plaque instability. 3F7 or its isotype control, BM4, was administered to mice (10 mg/kg) on alternate days for 4 to 8 weeks, depending on the experimental model. Mice were examined for the development and size of AAAs, or the burden and instability of atherosclerosis and associated markers of inflammation. RESULTS: Inhibition of FXIIa resulted in a reduced incidence of larger AAAs, with less acute aortic ruptures and an associated fibro-protective phenotype. FXIIa inhibition also decreased stable atherosclerotic plaque burden and achieved plaque stabilization associated with increased deposition of fibrous structures, a >2-fold thicker fibrous cap, increased cap-to-core ratio, and reduction in localized and systemic inflammatory markers. CONCLUSION: Inhibition of FXIIa attenuates disease severity across three mouse models of thromboinflammation-driven cardiovascular diseases. Specifically, the FXIIa-inhibiting monoclonal antibody 3F7 reduces AAA severity, inhibits the development of atherosclerosis, and stabilizes vulnerable plaques. Ultimately, clinical trials in patients with cardiovascular diseases such as AAA and atherosclerosis are warranted to demonstrate the therapeutic potential of FXIIa inhibition.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Aneurisma da Aorta Abdominal/prevenção & controle , Aterosclerose/prevenção & controle , Fator XIIa/antagonistas & inibidores , Placa Aterosclerótica/metabolismo , Animais , Aneurisma da Aorta Abdominal/epidemiologia , Apolipoproteínas E , Modelos Animais de Doenças , Inflamação , Masculino , Camundongos
16.
J Thromb Haemost ; 19(11): 2835-2840, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34363738

RESUMO

BACKGROUND: Effective inhibition of thrombosis without generating bleeding risks is a major challenge in medicine. Accumulating evidence suggests that this can be achieved by inhibition of coagulation factor XII (FXII), as either its knock-out or inhibition in animal models efficiently reduced thrombosis without affecting normal hemostasis. Based on these findings, highly specific inhibitors for human FXII(a) are under development. However, currently, in vivo studies on their efficacy and safety are impeded by the lack of an optimized animal model expressing the specific target, that is, human FXII. OBJECTIVE: The primary objective of this study is to develop and functionally characterize a humanized FXII mouse model. METHODS: A humanized FXII mouse model was generated by replacing the murine with the human F12 gene (genetic knock-in) and tested it in in vitro coagulation assays and in in vivo thrombosis models. RESULTS: These hF12KI mice were indistinguishable from wild-type mice in all tested assays of coagulation and platelet function in vitro and in vivo, except for reduced expression levels of hFXII compared to human plasma. Targeting FXII by the anti-human FXIIa antibody 3F7 increased activated partial thromboplastin time dose-dependently and protected hF12KI mice in an arterial thrombosis model without affecting bleeding times. CONCLUSION: These data establish the newly generated hF12KI mouse as a powerful and unique model system for in vivo studies on anti-FXII(a) biologics, supporting the development of efficient and safe human FXII(a) inhibitors.


Assuntos
Fator XII , Trombose , Animais , Coagulação Sanguínea , Modelos Animais de Doenças , Fator XII/genética , Hemostasia , Camundongos , Trombose/tratamento farmacológico , Trombose/genética
17.
J Thromb Haemost ; 19(11): 2710-2725, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34333849

RESUMO

BACKGROUND: We have recently reported on a recombinant von Willebrand factor (VWF) D'D3 albumin fusion protein (rD'D3-FP) developed to extend the half-life of coagulation factor VIII (FVIII) for the treatment of hemophilia A. Based on predictive modelling presented in this study, we hypothesized that modifying rD'D3-FP to improve FVIII interaction would reduce exchange with endogenous VWF and provide additional FVIII half-life benefit. OBJECTIVES: The aim of this study was to identify novel rD'D3-FP variants with enhanced therapeutic efficacy in extending FVIII half-life. METHODS: Through both directed mutagenesis and random mutagenesis using a novel mammalian display platform, we identified novel rD'D3-FP variants with increased affinity for FVIII (rVIII-SingleChain) under both neutral and acidic conditions and assessed their ability to extend FVIII half-life in vitro and in vivo. RESULTS: In rat preclinical studies, rD'D3-FP variants with increased affinity for FVIII displayed enhanced potency, with reduced dose levels required to achieve equivalent rVIII-SingleChain half-life extension. In cell-based imaging studies in vitro, we also demonstrated reduced dissociation of rVIII-SingleChain from the rD'D3-FP variants within acidic endosomes and more efficient co-recycling of the rD'D3-FP/rVIII-SingleChain complex via the FcRn recycling system. CONCLUSIONS: In summary, at potential clinical doses, the rD'D3-FP variants provide marked benefits with respect to dose levels and half-life extension of co-administered FVIII, supporting their development for use in the treatment of hemophilia A.


Assuntos
Fator VIII , Hemofilia A , Albuminas , Animais , Fator VIII/genética , Hemofilia A/tratamento farmacológico , Hemofilia A/genética , Ratos , Proteínas Recombinantes de Fusão , Proteínas Recombinantes/genética , Fator de von Willebrand/genética
18.
Science ; 367(6478)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31919129

RESUMO

Gamma delta (γδ) T cells are essential to protective immunity. In humans, most γδ T cells express Vγ9Vδ2+ T cell receptors (TCRs) that respond to phosphoantigens (pAgs) produced by cellular pathogens and overexpressed by cancers. However, the molecular targets recognized by these γδTCRs are unknown. Here, we identify butyrophilin 2A1 (BTN2A1) as a key ligand that binds to the Vγ9+ TCR γ chain. BTN2A1 associates with another butyrophilin, BTN3A1, and these act together to initiate responses to pAg. Furthermore, binding of a second ligand, possibly BTN3A1, to a separate TCR domain incorporating Vδ2 is also required. This distinctive mode of Ag-dependent T cell activation advances our understanding of diseases involving pAg recognition and creates opportunities for the development of γδ T cell-based immunotherapies.


Assuntos
Antígenos de Neoplasias/imunologia , Butirofilinas/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Antígenos CD/química , Antígenos CD/imunologia , Butirofilinas/química , Butirofilinas/genética , Linhagem Celular Tumoral , Humanos , Ligantes , Ativação Linfocitária , Fosforilação , Domínios Proteicos , Multimerização Proteica
19.
Methods Mol Biol ; 1701: 447-461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29116521

RESUMO

We have recently described a one-step zero-background IgG reformatting method that enables the rapid reformatting of phage-displayed antibody fragments into a single-mammalian cell expression vector for full IgG expression (Chen et al. Nucleic Acids Res 42:e26, 2014). The strategy utilizes our unique positive selection method, referred to as insert-tagged (InTag) positive selection, where a positive selection marker (e.g. chloramphenicol-resistance gene) is cloned together with the antibody inserts into the expression vector. The recombinant clones containing the InTag adaptor are then positively selected without cloning background, thus bypassing the need to plate out cultures and screen colonies. This IgG reformatting method is rapid and can be automated and performed in a high-throughput (HTP) format. The use of InTag positive selection with the Dyax Fab-on-phage antibody library is demonstrated. We have further optimized the protocol for IgG reformatting since the initial publication of this method (Chen et al. Nucleic Acids Res 42:e26, 2014) and also updated the transient transfection protocol using Expi293F cells, which are described herein.


Assuntos
Expressão Gênica , Biblioteca Gênica , Imunoglobulina G , Biblioteca de Peptídeos , Anticorpos de Cadeia Única , Animais , Linhagem Celular , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/genética
20.
PLoS One ; 11(1): e0146783, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26815580

RESUMO

BACKGROUND AND PURPOSE: Ischemic stroke provokes severe brain damage and remains a predominant disease in industrialized countries. The coagulation factor XII (FXII)-driven contact activation system plays a central, but not yet fully defined pathogenic role in stroke development. Here, we investigated the efficacy of the FXIIa inhibitor rHA-Infestin-4 in a rat model of ischemic stroke using both a prophylactic and a therapeutic approach. METHODS: For prophylactic treatment, animals were treated intravenously with 100 mg/kg rHA-Infestin-4 or an equal volume of saline 15 min prior to transient middle cerebral artery occlusion (tMCAO) of 90 min. For therapeutic treatment, 100 mg/kg rHA-Infestin-4, or an equal volume of saline, was administered directly after the start of reperfusion. At 24 h after tMCAO, rats were tested for neurological deficits and blood was drawn for coagulation assays. Finally, brains were removed and analyzed for infarct area and edema formation. RESULTS: Within prophylactic rHA-Infestin-4 treatment, infarct areas and brain edema formation were reduced accompanied by better neurological scores and survival compared to controls. Following therapeutic treatment, neurological outcome and survival were still improved although overall effects were less pronounced compared to prophylaxis. CONCLUSIONS: With regard to the central role of the FXII-driven contact activation system in ischemic stroke, inhibition of FXIIa may represent a new and promising treatment approach to prevent cerebral ischemia/reperfusion injury.


Assuntos
Fator XIIa/antagonistas & inibidores , Infarto da Artéria Cerebral Média/tratamento farmacológico , Proteínas de Insetos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Inibidores de Serina Proteinase/farmacologia , Albumina Sérica/farmacologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Células CHO , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Fator XIIa/metabolismo , Proteínas de Insetos/uso terapêutico , Masculino , Ratos , Proteínas Recombinantes de Fusão/uso terapêutico , Teste de Desempenho do Rota-Rod , Inibidores de Serina Proteinase/uso terapêutico , Albumina Sérica/uso terapêutico , Albumina Sérica Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA