Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(23): 4272-4289.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37951215

RESUMO

Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.


Assuntos
RNA , Ubiquitina-Proteína Ligases , Humanos , RNA/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Formaldeído/toxicidade , Aldeídos/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Mol Cell ; 83(19): 3558-3573.e7, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802028

RESUMO

Cellular senescence is a stress-response mechanism implicated in various physiological processes, diseases, and aging. Current detection approaches have partially addressed the issue of senescent cell identification in clinical specimens. Effective methodologies enabling precise isolation or live tracking of senescent cells are still lacking. In-depth analysis of truly senescent cells is, therefore, an extremely challenging task. We report (1) the synthesis and validation of a fluorophore-conjugated, Sudan Black-B analog (GLF16), suitable for in vivo and in vitro analysis of senescence by fluorescence microscopy and flow cytometry and (2) the development and application of a GLF16-carrying micelle vector facilitating GLF16 uptake by living senescent cells in vivo and in vitro. The compound and the applied methodology render isolation of senescent cells an easy, rapid, and precise process. Straightforward nanocarrier-mediated GLF16 delivery in live senescent cells comprises a unique tool for characterization of senescence at an unprecedented depth.


Assuntos
Senescência Celular , Indicadores e Reagentes , Citometria de Fluxo
3.
Nature ; 616(7958): 814-821, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046086

RESUMO

Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.


Assuntos
Envelhecimento , Longevidade , Elongação da Transcrição Genética , Animais , Humanos , Camundongos , Ratos , Envelhecimento/genética , Insulina/metabolismo , Longevidade/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Drosophila melanogaster/genética , Caenorhabditis elegans/genética , RNA Circular , Somatomedinas , Nucleossomos , Histonas , Divisão Celular , Restrição Calórica
4.
Mol Cell ; 81(23): 4907-4923.e8, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34793711

RESUMO

Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not removed timely via immune surveillance, senescent cells also have detrimental effects. Although this has mostly been attributed to the senescence-associated secretory phenotype (SASP) of these cells, we recently proposed that "escape" from the senescent state is another unfavorable outcome. The mechanism underlying this phenomenon remains elusive. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion that harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and driving cell cycle re-entry of senescent cells, and malignant transformation. Ectopic overexpression of BHLHE40 prevented induction of CDC6-triggered senescence. We provide strong evidence in support of replication stress-induced genomic instability being a causative factor underlying "escape" from oncogene-induced senescence.


Assuntos
Senescência Celular , Inversão Cromossômica , Cromossomos/ultraestrutura , Transição Epitelial-Mesenquimal , Neoplasias/genética , Oncogenes , Recombinação Genética , Animais , Brônquios/metabolismo , Sistemas CRISPR-Cas , Ciclo Celular , Transformação Celular Neoplásica , Ritmo Circadiano , Biologia Computacional , Células Epiteliais/metabolismo , Citometria de Fluxo , Genômica , Humanos , Cariotipagem , Camundongos , Camundongos SCID , Neoplasias/metabolismo , Fenótipo , Ligação Proteica , Domínios Proteicos , Fenótipo Secretor Associado à Senescência
6.
Mol Cell ; 75(2): 267-283.e12, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31202576

RESUMO

How spatial chromosome organization influences genome integrity is still poorly understood. Here, we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CCCTC-binding factor (CTCF) and cohesin-bound sites at the bases of chromatin loops, and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hotspots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability and are key contributors to the occurrence of genome rearrangements that drive cancer.


Assuntos
DNA Topoisomerases Tipo II/genética , Instabilidade Genômica/genética , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Translocação Genética/genética , Fator de Ligação a CCCTC/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Cromatina/química , Cromatina/genética , Cromossomos/química , Cromossomos/genética , DNA/genética , Quebras de DNA de Cadeia Dupla , Humanos , Leucemia/genética , Leucemia/patologia
7.
Mol Cell ; 70(4): 730-744.e6, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29706538

RESUMO

Processes like cellular senescence are characterized by complex events giving rise to heterogeneous cell populations. However, the early molecular events driving this cascade remain elusive. We hypothesized that senescence entry is triggered by an early disruption of the cells' three-dimensional (3D) genome organization. To test this, we combined Hi-C, single-cell and population transcriptomics, imaging, and in silico modeling of three distinct cells types entering senescence. Genes involved in DNA conformation maintenance are suppressed upon senescence entry across all cell types. We show that nuclear depletion of the abundant HMGB2 protein occurs early on the path to senescence and coincides with the dramatic spatial clustering of CTCF. Knocking down HMGB2 suffices for senescence-induced CTCF clustering and for loop reshuffling, while ectopically expressing HMGB2 rescues these effects. Our data suggest that HMGB2-mediated genomic reorganization constitutes a primer for the ensuing senescent program.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Genoma Humano , Proteína HMGB2/metabolismo , Fator de Ligação a CCCTC/genética , Proliferação de Células , Senescência Celular , Cromatina/genética , Proteína HMGB2/genética , Células Endoteliais da Veia Umbilical Humana , Humanos
8.
Nucleic Acids Res ; 52(4): 1953-1974, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38113271

RESUMO

Regulation of RNA helicase activity, often accomplished by protein cofactors, is essential to ensure target specificity within the complex cellular environment. The largest family of RNA helicase cofactors are the G-patch proteins, but the cognate RNA helicases and cellular functions of numerous human G-patch proteins remain elusive. Here, we discover that GPATCH4 is a stimulatory cofactor of DHX15 that interacts with the DEAH box helicase in the nucleolus via residues in its G-patch domain. We reveal that GPATCH4 associates with pre-ribosomal particles, and crosslinks to the transcribed ribosomal DNA locus and precursor ribosomal RNAs as well as binding to small nucleolar- and small Cajal body-associated RNAs that guide rRNA and snRNA modifications. Loss of GPATCH4 impairs 2'-O-methylation at various rRNA and snRNA sites leading to decreased protein synthesis and cell growth. We demonstrate that the regulation of 2'-O-methylation by GPATCH4 is both dependent on, and independent of, its interaction with DHX15. Intriguingly, the ATPase activity of DHX15 is necessary for efficient methylation of DHX15-dependent sites, suggesting a function of DHX15 in regulating snoRNA-guided 2'-O-methylation of rRNA that requires activation by GPATCH4. Overall, our findings extend knowledge on RNA helicase regulation by G-patch proteins and also provide important new insights into the mechanisms regulating installation of rRNA and snRNA modifications, which are essential for ribosome function and pre-mRNA splicing.


Assuntos
RNA Helicases , RNA Ribossômico , Humanos , Metilação , Ribossomos/metabolismo , RNA Helicases/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo
9.
Trends Genet ; 37(11): 986-994, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34311989

RESUMO

High mobility group proteins (HMGs) are the most abundant nuclear proteins next to histones and are robustly expressed across tissues and organs. HMGs can uniquely bend or bind distorted DNA, and are central to such processes as transcription, recombination, and DNA repair. However, their dynamic association with chromatin renders capturing HMGs on chromosomes challenging. Recent work has changed this and now implicates these factors in spatial genome organization. Here, I revisit older and review recent literature to describe how HMGs rewire spatial chromatin interactions to sustain homeostasis or promote cellular aging. I propose a 'rheostat' model to explain how HMG-box proteins (HMGBs), and to some extent HMG A proteins (HMGAs), may control cellular aging and, likely, cancer progression.


Assuntos
Cromatina , Proteínas de Grupo de Alta Mobilidade , Proliferação de Células/genética , Cromatina/genética , DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/metabolismo
10.
EMBO J ; 39(1): e101533, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31701553

RESUMO

How cytokine-driven changes in chromatin topology are converted into gene regulatory circuits during inflammation still remains unclear. Here, we show that interleukin (IL)-1α induces acute and widespread changes in chromatin accessibility via the TAK1 kinase and NF-κB at regions that are highly enriched for inflammatory disease-relevant SNPs. Two enhancers in the extended chemokine locus on human chromosome 4 regulate the IL-1α-inducible IL8 and CXCL1-3 genes. Both enhancers engage in dynamic spatial interactions with gene promoters in an IL-1α/TAK1-inducible manner. Microdeletions of p65-binding sites in either of the two enhancers impair NF-κB recruitment, suppress activation and biallelic transcription of the IL8/CXCL2 genes, and reshuffle higher-order chromatin interactions as judged by i4C interactome profiles. Notably, these findings support a dominant role of the IL8 "master" enhancer in the regulation of sustained IL-1α signaling, as well as for IL-8 and IL-6 secretion. CRISPR-guided transactivation of the IL8 locus or cross-TAD regulation by TNFα-responsive enhancers in a different model locus supports the existence of complex enhancer hierarchies in response to cytokine stimulation that prime and orchestrate proinflammatory chromatin responses downstream of NF-κB.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Interleucina-1alfa/farmacologia , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Sítios de Ligação , Células Cultivadas , Quimiocinas/metabolismo , Cromatina/química , Cromatina/genética , Células HeLa , Humanos , MAP Quinase Quinase Quinases/genética , NF-kappa B/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
11.
RNA ; 28(11): 1481-1495, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35973723

RESUMO

Circular RNAs are an endogenous long-lived and abundant noncoding species. Despite their prevalence, only a few circRNAs have been dissected mechanistically to date. Here, we cataloged nascent RNA-enriched circRNAs from primary human cells and functionally assigned a role to circRAB3IP in sustaining cellular homeostasis. We combined "omics" and functional experiments to show how circRAB3IP depletion deregulates hundreds of genes, suppresses cell cycle progression, and induces senescence-associated gene expression changes. Conversely, excess circRAB3IP delivered to endothelial cells via extracellular vesicles suffices for accelerating their division. We attribute these effects to an interplay between circRAB3IP and the general splicing factor SF3B1, which can affect transcript variant expression levels of cell cycle-related genes. Together, our findings link the maintenance of cell homeostasis to the presence of a single circRNA.


Assuntos
MicroRNAs , RNA Circular , Humanos , RNA Circular/genética , Células Endoteliais/metabolismo , Proliferação de Células/genética , RNA Mensageiro/genética , Expressão Gênica , MicroRNAs/genética
12.
Genome Res ; 30(4): 515-527, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32253279

RESUMO

Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG subunits, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy individual binding sites and have distinct ways by which they affect looping and gene expression. These findings are further supported by single-molecule localizations via direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging. Since somatic and congenital mutations of the STAG subunits are associated with cancer (STAG2) and intellectual disability syndromes with congenital abnormalities (STAG1 and STAG2), we verified STAG1-/STAG2-dependencies using human neural stem cells, hence highlighting their importance in particular disease contexts.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Diploide , Humanos , Proteínas Nucleares/química , Ligação Proteica , Conformação Proteica , Proteólise , Relação Estrutura-Atividade , Coesinas
13.
Hum Mol Genet ; 29(R2): R197-R204, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32619215

RESUMO

Human chromosomes are large spatially and hierarchically structured entities, the integrity of which needs to be preserved throughout the lifespan of the cell and in conjunction with cell cycle progression. Preservation of chromosomal structure is important for proper deployment of cell type-specific gene expression programs. Thus, aberrations in the integrity and structure of chromosomes will predictably lead to disease, including cancer. Here, we provide an updated standpoint with respect to chromatin misfolding and the emergence of various cancer types. We discuss recent studies implicating the disruption of topologically associating domains, switching between active and inactive compartments, rewiring of promoter-enhancer interactions in malignancy as well as the effects of single nucleotide polymorphisms in non-coding regions involved in long-range regulatory interactions. In light of these findings, we argue that chromosome conformation studies may now also be useful for patient diagnosis and drug target discovery.


Assuntos
Montagem e Desmontagem da Cromatina , Cromossomos Humanos/química , Neoplasias/patologia , Regiões Promotoras Genéticas , Cromossomos Humanos/genética , Genoma Humano , Humanos , Neoplasias/etiologia
14.
Eur Respir J ; 60(2)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35086840

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory system can progress to a multisystemic disease with aberrant inflammatory response. Cellular senescence promotes chronic inflammation, named senescence-associated secretory phenotype (SASP). We investigated whether coronavirus disease 2019 (COVID-19) is associated with cellular senescence and SASP. METHODS: Autopsy lung tissue samples from 11 COVID-19 patients and 43 age-matched non-COVID-19 controls with similar comorbidities were analysed by immunohistochemistry for SARS-CoV-2, markers of senescence and key SASP cytokines. Virally induced senescence was functionally recapitulated in vitro, by infecting epithelial Vero-E6 cells and a three-dimensional alveosphere system of alveolar type 2 (AT2) cells with SARS-CoV-2 strains isolated from COVID-19 patients. RESULTS: SARS-CoV-2 was detected by immunocytochemistry and electron microscopy predominantly in AT2 cells. Infected AT2 cells expressed angiotensin-converting enzyme 2 and exhibited increased senescence (p16INK4A and SenTraGor positivity) and interleukin (IL)-1ß and IL-6 expression. In vitro, infection of Vero-E6 cells with SARS-CoV-2 induced senescence (SenTraGor), DNA damage (γ-H2AX) and increased cytokine (IL-1ß, IL-6, CXCL8) and apolipoprotein B mRNA-editing (APOBEC) enzyme expression. Next-generation sequencing analysis of progenies obtained from infected/senescent Vero-E6 cells demonstrated APOBEC-mediated SARS-CoV-2 mutations. Dissemination of the SARS-CoV-2-infection and senescence was confirmed in extrapulmonary sites (kidney and liver) of a COVID-19 patient. CONCLUSIONS: We demonstrate that in severe COVID-19, AT2 cells infected by SARS-CoV-2 exhibit senescence and a proinflammatory phenotype. In vitro, SARS-CoV-2 infection induces senescence and inflammation. Importantly, infected senescent cells may act as a source of SARS-CoV-2 mutagenesis mediated by APOBEC enzymes. Therefore, SARS-CoV-2-induced senescence may be an important molecular mechanism of severe COVID-19, disease persistence and mutagenesis.


Assuntos
COVID-19 , SARS-CoV-2 , Senescência Celular , Citocinas/metabolismo , Humanos , Inflamação , Interleucina-6 , Pulmão/metabolismo , Mutagênese , Fenótipo
15.
Mol Syst Biol ; 17(6): e9760, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166567

RESUMO

Spatial organization and gene expression of mammalian chromosomes are maintained and regulated in conjunction with cell cycle progression. This is perturbed once cells enter senescence and the highly abundant HMGB1 protein is depleted from nuclei to act as an extracellular proinflammatory stimulus. Despite its physiological importance, we know little about the positioning of HMGB1 on chromatin and its nuclear roles. To address this, we mapped HMGB1 binding genome-wide in two primary cell lines. We integrated ChIP-seq and Hi-C with graph theory to uncover clustering of HMGB1-marked topological domains that harbor genes involved in paracrine senescence. Using simplified Cross-Linking and Immuno-Precipitation and functional tests, we show that HMGB1 is also a bona fide RNA-binding protein (RBP) binding hundreds of mRNAs. It presents an interactome rich in RBPs implicated in senescence regulation. The mRNAs of many of these RBPs are directly bound by HMGB1 and regulate availability of SASP-relevant transcripts. Our findings reveal a broader than hitherto assumed role for HMGB1 in coordinating chromatin folding and RNA homeostasis as part of a regulatory loop controlling cell-autonomous and paracrine senescence.


Assuntos
Proteína HMGB1 , RNA , Animais , Senescência Celular/genética , Cromatina/genética , Proteína HMGB1/genética , Homeostase/genética
16.
J Cell Sci ; 132(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31028178

RESUMO

A distinct combination of transcription factors elicits the acquisition of a specific fate and the initiation of a differentiation program. Multiciliated cells (MCCs) are a specialized type of epithelial cells that possess dozens of motile cilia on their apical surface. Defects in cilia function have been associated with ciliopathies that affect many organs, including brain and airway epithelium. Here we show that the geminin coiled-coil domain-containing protein 1 GemC1 (also known as Lynkeas) regulates the transcriptional activation of p73, a transcription factor central to multiciliogenesis. Moreover, we show that GemC1 acts in a trimeric complex with transcription factor E2F5 and tumor protein p73 (officially known as TP73), and that this complex is important for the activation of the p73 promoter. We also provide in vivo evidence that GemC1 is necessary for p73 expression in different multiciliated epithelia. We further show that GemC1 regulates multiciliogenesis through the control of chromatin organization, and the epigenetic marks/tags of p73 and Foxj1. Our results highlight novel signaling cues involved in the commitment program of MCCs across species and tissues.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/genética , Proteína Tumoral p73/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Linhagem Celular , Cromatina/metabolismo , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Ativação Transcricional/genética , Proteína Tumoral p73/genética
17.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886000

RESUMO

Cardiac dysfunctions dramatically increase with age. Revealing a currently unknown contributor to cardiac ageing, we report the age-dependent, cardiac-specific accumulation of the lysosphingolipid sphinganine (dihydrosphingosine, DHS) as an evolutionarily conserved hallmark of the aged vertebrate heart. Mechanistically, the DHS-derivative sphinganine-1-phosphate (DHS1P) directly inhibits HDAC1, causing an aberrant elevation in histone acetylation and transcription levels, leading to DNA damage. Accordingly, the pharmacological interventions, preventing (i) the accumulation of DHS1P using SPHK2 inhibitors, (ii) the aberrant increase in histone acetylation using histone acetyltransferase (HAT) inhibitors, (iii) the DHS1P-dependent increase in transcription using an RNA polymerase II inhibitor, block DHS-induced DNA damage in human cardiomyocytes. Importantly, an increase in DHS levels in the hearts of healthy young adult mice leads to an impairment in cardiac functionality indicated by a significant reduction in left ventricular fractional shortening and ejection fraction, mimicking the functional deterioration of aged hearts. These molecular and functional defects can be partially prevented in vivo using HAT inhibitors. Together, we report an evolutionarily conserved mechanism by which increased DHS levels drive the decline in cardiac health.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Variação Genética , Instabilidade Genômica , Miocárdio/metabolismo , Esfingolipídeos/metabolismo , Animais , Curcumina/química , Curcumina/farmacologia , Dano ao DNA/efeitos dos fármacos , Metabolismo Energético , Epigênese Genética , Evolução Molecular , Fundulidae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica/métodos , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Modelos Moleculares , Miócitos Cardíacos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Relação Estrutura-Atividade , Vertebrados/genética , Vertebrados/metabolismo
18.
Methods ; 170: 33-37, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283985

RESUMO

Genome organization is now understood to be tightly linked to all genomic functions. Thus, the high-resolution mapping of higher-order chromosomal structures via 3C-based approaches has become an integral tool for studying transcriptional and cell cycle regulation, signaling effects or disease onset. Nonetheless, 3C-based protocols are not without caveats, like dependencies on fixation conditions, restriction enzyme pervasiveness in crosslinked chromatin and ligation efficiency. To address some of these caveats, we describe here the streamlined iHi-C 2.0 protocol that allows for the genome-wide interrogation of native spatial chromatin contacts without a need for chemical fixation. This approach improves ligation efficiency and presents minimal material losses, and is thus suitable for analysing samples with limiting cell numbers. Following high throughput sequencing, iHi-C 2.0 generates high signal-to-noise and focal maps of the interactions within and between mammalian chromosomes under native conditions.


Assuntos
Cromatina/genética , Mapeamento Cromossômico/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Contagem de Células , Fracionamento Celular/métodos , Linhagem Celular , Núcleo Celular/genética , Humanos , Conformação de Ácido Nucleico , Células-Tronco Pluripotentes , Sequenciamento Completo do Genoma/métodos
19.
Nucleic Acids Res ; 46(1): 83-93, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29190361

RESUMO

Reconciling the stability of epigenetic patterns with the rapid turnover of histone modifications and their adaptability to external stimuli is an outstanding challenge. Here, we propose a new biophysical mechanism that can establish and maintain robust yet plastic epigenetic domains via genomic bookmarking (GBM). We model chromatin as a recolourable polymer whose segments bear non-permanent histone marks (or colours) which can be modified by 'writer' proteins. The three-dimensional chromatin organisation is mediated by protein bridges, or 'readers', such as Polycomb Repressive Complexes and Transcription Factors. The coupling between readers and writers drives spreading of biochemical marks and sustains the memory of local chromatin states across replication and mitosis. In contrast, GBM-targeted perturbations destabilise the epigenetic patterns. Strikingly, we demonstrate that GBM alone can explain the full distribution of Polycomb marks in a whole Drosophila chromosome. We finally suggest that our model provides a starting point for an understanding of the biophysics of cellular differentiation and reprogramming.


Assuntos
Cromatina/metabolismo , Epigênese Genética , Epigenômica/métodos , Genômica/métodos , Código das Histonas , Animais , Linhagem Celular , Cromatina/genética , Cromossomos de Insetos/genética , Metilação de DNA , Drosophila/citologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Processamento de Proteína Pós-Traducional
20.
Glia ; 67(12): 2360-2373, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31328313

RESUMO

The subventricular zone (SVZ) is one of two main niches where neurogenesis persists during adulthood, as it retains neural stem cells (NSCs) with self-renewal capacity and multi-lineage potency. Another critical cellular component of the niche is the population of postmitotic multiciliated ependymal cells. Both cell types are derived from radial glial cells that become specified to each lineage during embryogenesis. We show here that GemC1, encoding Geminin coiled-coil domain-containing protein 1, is associated with congenital hydrocephalus in humans and mice. Our results show that GemC1 deficiency drives cells toward a NSC phenotype, at the expense of multiciliated ependymal cell generation. The increased number of NSCs is accompanied by increased levels of proliferation and neurogenesis in the postnatal SVZ. Finally, GemC1-knockout cells display altered chromatin organization at multiple loci, further supporting a NSC identity. Together, these findings suggest that GemC1 regulates the balance between NSC generation and ependymal cell differentiation, with implications for the pathogenesis of human congenital hydrocephalus.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ciclo Celular/deficiência , Genes de Troca/fisiologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Animais , Encéfalo/citologia , Proteínas de Ciclo Celular/genética , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA