Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 5(6): 836-844, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33833421

RESUMO

The Convention on Biological Diversity's post-2020 Global Biodiversity Framework will probably include a goal to stabilize and restore the status of species. Its delivery would be facilitated by making the actions required to halt and reverse species loss spatially explicit. Here, we develop a species threat abatement and restoration (STAR) metric that is scalable across species, threats and geographies. STAR quantifies the contributions that abating threats and restoring habitats in specific places offer towards reducing extinction risk. While every nation can contribute towards halting biodiversity loss, Indonesia, Colombia, Mexico, Madagascar and Brazil combined have stewardship over 31% of total STAR values for terrestrial amphibians, birds and mammals. Among actions, sustainable crop production and forestry dominate, contributing 41% of total STAR values for these taxonomic groups. Key Biodiversity Areas cover 9% of the terrestrial surface but capture 47% of STAR values. STAR could support governmental and non-state actors in quantifying their contributions to meeting science-based species targets within the framework.


Assuntos
Conservação dos Recursos Naturais , Animais , Brasil , Colômbia , Indonésia , Madagáscar , México
2.
PLoS One ; 13(11): e0207114, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408090

RESUMO

With less than 3200 wild tigers in 2010, the heads of 13 tiger-range countries committed to doubling the global population of wild tigers by 2022. This goal represents the highest level of ambition and commitment required to turn the tide for tigers in the wild. Yet, ensuring efficient and targeted implementation of conservation actions alongside systematic monitoring of progress towards this goal requires that we set site-specific recovery targets and timelines that are ecologically realistic. In this study, we assess the recovery potential of 18 sites identified under WWF's Tigers Alive Initiative. We delineated recovery systems comprising a source, recovery site, and support region, which need to be managed synergistically to meet these targets. By using the best available data on tiger and prey numbers, and adapting existing species recovery frameworks, we show that these sites, which currently support 165 (118-277) tigers, have the potential to harbour 585 (454-739) individuals. This would constitute a 15% increase in the global population and represent over a three-fold increase within these specific sites, on an average. However, it may not be realistic to achieve this target by 2022, since tiger recovery in 15 of these 18 sites is contingent on the initial recovery of prey populations, which is a slow process. We conclude that while sustained conservation efforts can yield significant recoveries, it is critical that we commit our resources to achieving the biologically realistic targets for these sites even if the timelines are extended.


Assuntos
Espécies em Perigo de Extinção , Tigres , Animais , Ásia , Objetivos , Densidade Demográfica , Comportamento Predatório , Fatores de Tempo
3.
PLoS One ; 7(1): e30859, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22292063

RESUMO

The critically endangered Sumatran tiger (Panthera tigris sumatrae Pocock, 1929) is generally known as a forest-dependent animal. With large-scale conversion of forests into plantations, however, it is crucial for restoration efforts to understand to what extent tigers use modified habitats. We investigated tiger-habitat relationships at 2 spatial scales: occupancy across the landscape and habitat use within the home range. Across major landcover types in central Sumatra, we conducted systematic detection, non-detection sign surveys in 47, 17×17 km grid cells. Within each cell, we surveyed 40, 1-km transects and recorded tiger detections and habitat variables in 100 m segments totaling 1,857 km surveyed. We found that tigers strongly preferred forest and used plantations of acacia and oilpalm, far less than their availability. Tiger probability of occupancy covaried positively and strongly with altitude, positively with forest area, and negatively with distance-to-forest centroids. At the fine scale, probability of habitat use by tigers across landcover types covaried positively and strongly with understory cover and altitude, and negatively and strongly with human settlement. Within forest areas, tigers strongly preferred sites that are farther from water bodies, higher in altitude, farther from edge, and closer to centroid of large forest block; and strongly preferred sites with thicker understory cover, lower level of disturbance, higher altitude, and steeper slope. These results indicate that to thrive, tigers depend on the existence of large contiguous forest blocks, and that with adjustments in plantation management, tigers could use mosaics of plantations (as additional roaming zones), riparian forests (as corridors) and smaller forest patches (as stepping stones), potentially maintaining a metapopulation structure in fragmented landscapes. This study highlights the importance of a multi-spatial scale analysis and provides crucial information relevant to restoring tigers and other wildlife in forest and plantation landscapes through improvement in habitat extent, quality, and connectivity.


Assuntos
Ecossistema , Avaliação das Necessidades , Plantas , Tigres/fisiologia , Árvores/fisiologia , Agricultura/métodos , Animais , Gatos , Conservação dos Recursos Naturais/métodos , Demografia , Geografia , Indonésia , Conhecimento , Modelos Biológicos
4.
PLoS One ; 6(11): e25931, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22087218

RESUMO

Large carnivores living in tropical rainforests are under immense pressure from the rapid conversion of their habitat. In response, millions of dollars are spent on conserving these species. However, the cost-effectiveness of such investments is poorly understood and this is largely because the requisite population estimates are difficult to achieve at appropriate spatial scales for these secretive species. Here, we apply a robust detection/non-detection sampling technique to produce the first reliable population metric (occupancy) for a critically endangered large carnivore; the Sumatran tiger (Panthera tigris sumatrae). From 2007-2009, seven landscapes were surveyed through 13,511 km of transects in 394 grid cells (17×17 km). Tiger sign was detected in 206 cells, producing a naive estimate of 0.52. However, after controlling for an unequal detection probability (where p = 0.13±0.017; ±S.E.), the estimated tiger occupancy was 0.72±0.048. Whilst the Sumatra-wide survey results gives cause for optimism, a significant negative correlation between occupancy and recent deforestation was found. For example, the Northern Riau landscape had an average deforestation rate of 9.8%/yr and by far the lowest occupancy (0.33±0.055). Our results highlight the key tiger areas in need of protection and have led to one area (Leuser-Ulu Masen) being upgraded as a 'global priority' for wild tiger conservation. However, Sumatra has one of the highest global deforestation rates and the two largest tiger landscapes identified in this study will become highly fragmented if their respective proposed roads networks are approved. Thus, it is vital that the Indonesian government tackles these threats, e.g. through improved land-use planning, if it is to succeed in meeting its ambitious National Tiger Recovery Plan targets of doubling the number of Sumatran tigers by 2022.


Assuntos
Ecossistema , Espécies em Perigo de Extinção/tendências , Cadeia Alimentar , Tigres , Animais , Conservação dos Recursos Naturais , Geografia , Indonésia , População , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA